Loading…

Designed Diblock Oligonucleotide for the Synthesis of Spatially Isolated and Highly Hybridizable Functionalization of DNA–Gold Nanoparticle Nanoconjugates

Conjugates of DNA and gold nanoparticles (AuNPs) typically exploit the strong Au–S chemistry to self-assemble thiolated oligonucleotides at AuNPs. However, it remains challenging to precisely control the orientation and conformation of surface-tethered oligonucleotides and finely tune the hybridizat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2012-07, Vol.134 (29), p.11876-11879
Main Authors: Pei, Hao, Li, Fan, Wan, Ying, Wei, Min, Liu, Huajie, Su, Yan, Chen, Nan, Huang, Qing, Fan, Chunhai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Conjugates of DNA and gold nanoparticles (AuNPs) typically exploit the strong Au–S chemistry to self-assemble thiolated oligonucleotides at AuNPs. However, it remains challenging to precisely control the orientation and conformation of surface-tethered oligonucleotides and finely tune the hybridization ability. We herein report a novel strategy for spatially controlled functionalization of AuNPs with designed diblock oligonucleotides that are free of modifications. We have demonstrated that poly adenine (polyA) can serve as an effective anchoring block for preferential binding with the AuNP surface, and the appended recognition block adopts an upright conformation that favors DNA hybridization. The lateral spacing and surface density of DNA on AuNPs can also be systematically modulated by adjusting the length of the polyA block. Significantly, this diblock oligonucleotide strategy results in DNA–AuNPs nanoconjugates with high and tunable hybridization ability, which form the basis of a rapid plasmonic DNA sensor.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja304118z