Loading…

Higher order limit q-Bernstein operators

In this paper we give the estimates of the central moments for the limit q‐Bernstein operators. We introduce the higher order generalization of the limit q‐Bernstein operators and using the moment estimations study the approximation properties of these newly defined operators. It is shown that the h...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2011-09, Vol.34 (13), p.1618-1626
Main Author: Mahmudov, N. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63
cites cdi_FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63
container_end_page 1626
container_issue 13
container_start_page 1618
container_title Mathematical methods in the applied sciences
container_volume 34
creator Mahmudov, N. I.
description In this paper we give the estimates of the central moments for the limit q‐Bernstein operators. We introduce the higher order generalization of the limit q‐Bernstein operators and using the moment estimations study the approximation properties of these newly defined operators. It is shown that the higher order limit q‐Bernstein operators faster than the q‐Bernstein operators for the smooth functions defined on [0, 1]. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.1469
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031289909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031289909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63</originalsourceid><addsrcrecordid>eNp10D1PAjEcx_HGaCKiiS-BxYSl2KfrXUdABRNQBxISl6bX9rR6D9geUd69JVxwcul_6Cff4QfANUYjjBC5rSo1woyLE9DDSAiIWcpPQQ_hFEFGMDsHFyF8IIQyjEkPDOfu7d36QeNNfEtXuXbwBSfW16G1rh40G-tV2_hwCc4KVQZ71d0-WD3cr6ZzuHiePU7HC6gp5wKKvDCcKJZnQhtsqCaFTRgzhlDGeJYghK1WRlFlkpzyPDrM4w8qRGIVp30wPGQ3vvna2tDKygVty1LVttkGiRHFJBMCiT-qfROCt4XceFcpv4tI7reQcQu53yLSm66qglZl4VWtXTh6wigTPM2igwf37Uq7-7cnl8tx1-28i2v9HL3yn5KnNE3k-mkmX9aTuzV7nckV_QV0m3rM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031289909</pqid></control><display><type>article</type><title>Higher order limit q-Bernstein operators</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Mahmudov, N. I.</creator><creatorcontrib>Mahmudov, N. I.</creatorcontrib><description>In this paper we give the estimates of the central moments for the limit q‐Bernstein operators. We introduce the higher order generalization of the limit q‐Bernstein operators and using the moment estimations study the approximation properties of these newly defined operators. It is shown that the higher order limit q‐Bernstein operators faster than the q‐Bernstein operators for the smooth functions defined on [0, 1]. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>ISSN: 1099-1476</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.1469</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Approximation ; central moment ; Estimates ; Exact sciences and technology ; higher order limit q-Bernstein operator ; limit q-Bernstein operator ; Mathematical analysis ; Mathematics ; Operator theory ; Operators ; positive linear operator ; q-Bernstein polynomials ; q-derivative ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2011-09, Vol.34 (13), p.1618-1626</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63</citedby><cites>FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24349678$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahmudov, N. I.</creatorcontrib><title>Higher order limit q-Bernstein operators</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In this paper we give the estimates of the central moments for the limit q‐Bernstein operators. We introduce the higher order generalization of the limit q‐Bernstein operators and using the moment estimations study the approximation properties of these newly defined operators. It is shown that the higher order limit q‐Bernstein operators faster than the q‐Bernstein operators for the smooth functions defined on [0, 1]. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>Approximation</subject><subject>central moment</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>higher order limit q-Bernstein operator</subject><subject>limit q-Bernstein operator</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operator theory</subject><subject>Operators</subject><subject>positive linear operator</subject><subject>q-Bernstein polynomials</subject><subject>q-derivative</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10D1PAjEcx_HGaCKiiS-BxYSl2KfrXUdABRNQBxISl6bX9rR6D9geUd69JVxwcul_6Cff4QfANUYjjBC5rSo1woyLE9DDSAiIWcpPQQ_hFEFGMDsHFyF8IIQyjEkPDOfu7d36QeNNfEtXuXbwBSfW16G1rh40G-tV2_hwCc4KVQZ71d0-WD3cr6ZzuHiePU7HC6gp5wKKvDCcKJZnQhtsqCaFTRgzhlDGeJYghK1WRlFlkpzyPDrM4w8qRGIVp30wPGQ3vvna2tDKygVty1LVttkGiRHFJBMCiT-qfROCt4XceFcpv4tI7reQcQu53yLSm66qglZl4VWtXTh6wigTPM2igwf37Uq7-7cnl8tx1-28i2v9HL3yn5KnNE3k-mkmX9aTuzV7nckV_QV0m3rM</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Mahmudov, N. I.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20110915</creationdate><title>Higher order limit q-Bernstein operators</title><author>Mahmudov, N. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>central moment</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>higher order limit q-Bernstein operator</topic><topic>limit q-Bernstein operator</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operator theory</topic><topic>Operators</topic><topic>positive linear operator</topic><topic>q-Bernstein polynomials</topic><topic>q-derivative</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmudov, N. I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmudov, N. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher order limit q-Bernstein operators</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2011-09-15</date><risdate>2011</risdate><volume>34</volume><issue>13</issue><spage>1618</spage><epage>1626</epage><pages>1618-1626</pages><issn>0170-4214</issn><issn>1099-1476</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>In this paper we give the estimates of the central moments for the limit q‐Bernstein operators. We introduce the higher order generalization of the limit q‐Bernstein operators and using the moment estimations study the approximation properties of these newly defined operators. It is shown that the higher order limit q‐Bernstein operators faster than the q‐Bernstein operators for the smooth functions defined on [0, 1]. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.1469</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2011-09, Vol.34 (13), p.1618-1626
issn 0170-4214
1099-1476
1099-1476
language eng
recordid cdi_proquest_miscellaneous_1031289909
source Wiley-Blackwell Read & Publish Collection
subjects Approximation
central moment
Estimates
Exact sciences and technology
higher order limit q-Bernstein operator
limit q-Bernstein operator
Mathematical analysis
Mathematics
Operator theory
Operators
positive linear operator
q-Bernstein polynomials
q-derivative
Sciences and techniques of general use
title Higher order limit q-Bernstein operators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20order%20limit%20q-Bernstein%20operators&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Mahmudov,%20N.%20I.&rft.date=2011-09-15&rft.volume=34&rft.issue=13&rft.spage=1618&rft.epage=1626&rft.pages=1618-1626&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.1469&rft_dat=%3Cproquest_cross%3E1031289909%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1031289909&rft_id=info:pmid/&rfr_iscdi=true