Loading…
Higher order limit q-Bernstein operators
In this paper we give the estimates of the central moments for the limit q‐Bernstein operators. We introduce the higher order generalization of the limit q‐Bernstein operators and using the moment estimations study the approximation properties of these newly defined operators. It is shown that the h...
Saved in:
Published in: | Mathematical methods in the applied sciences 2011-09, Vol.34 (13), p.1618-1626 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63 |
---|---|
cites | cdi_FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63 |
container_end_page | 1626 |
container_issue | 13 |
container_start_page | 1618 |
container_title | Mathematical methods in the applied sciences |
container_volume | 34 |
creator | Mahmudov, N. I. |
description | In this paper we give the estimates of the central moments for the limit q‐Bernstein operators. We introduce the higher order generalization of the limit q‐Bernstein operators and using the moment estimations study the approximation properties of these newly defined operators. It is shown that the higher order limit q‐Bernstein operators faster than the q‐Bernstein operators for the smooth functions defined on [0, 1]. Copyright © 2011 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.1469 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031289909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031289909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63</originalsourceid><addsrcrecordid>eNp10D1PAjEcx_HGaCKiiS-BxYSl2KfrXUdABRNQBxISl6bX9rR6D9geUd69JVxwcul_6Cff4QfANUYjjBC5rSo1woyLE9DDSAiIWcpPQQ_hFEFGMDsHFyF8IIQyjEkPDOfu7d36QeNNfEtXuXbwBSfW16G1rh40G-tV2_hwCc4KVQZ71d0-WD3cr6ZzuHiePU7HC6gp5wKKvDCcKJZnQhtsqCaFTRgzhlDGeJYghK1WRlFlkpzyPDrM4w8qRGIVp30wPGQ3vvna2tDKygVty1LVttkGiRHFJBMCiT-qfROCt4XceFcpv4tI7reQcQu53yLSm66qglZl4VWtXTh6wigTPM2igwf37Uq7-7cnl8tx1-28i2v9HL3yn5KnNE3k-mkmX9aTuzV7nckV_QV0m3rM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031289909</pqid></control><display><type>article</type><title>Higher order limit q-Bernstein operators</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Mahmudov, N. I.</creator><creatorcontrib>Mahmudov, N. I.</creatorcontrib><description>In this paper we give the estimates of the central moments for the limit q‐Bernstein operators. We introduce the higher order generalization of the limit q‐Bernstein operators and using the moment estimations study the approximation properties of these newly defined operators. It is shown that the higher order limit q‐Bernstein operators faster than the q‐Bernstein operators for the smooth functions defined on [0, 1]. Copyright © 2011 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>ISSN: 1099-1476</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.1469</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Approximation ; central moment ; Estimates ; Exact sciences and technology ; higher order limit q-Bernstein operator ; limit q-Bernstein operator ; Mathematical analysis ; Mathematics ; Operator theory ; Operators ; positive linear operator ; q-Bernstein polynomials ; q-derivative ; Sciences and techniques of general use</subject><ispartof>Mathematical methods in the applied sciences, 2011-09, Vol.34 (13), p.1618-1626</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63</citedby><cites>FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24349678$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahmudov, N. I.</creatorcontrib><title>Higher order limit q-Bernstein operators</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In this paper we give the estimates of the central moments for the limit q‐Bernstein operators. We introduce the higher order generalization of the limit q‐Bernstein operators and using the moment estimations study the approximation properties of these newly defined operators. It is shown that the higher order limit q‐Bernstein operators faster than the q‐Bernstein operators for the smooth functions defined on [0, 1]. Copyright © 2011 John Wiley & Sons, Ltd.</description><subject>Approximation</subject><subject>central moment</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>higher order limit q-Bernstein operator</subject><subject>limit q-Bernstein operator</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operator theory</subject><subject>Operators</subject><subject>positive linear operator</subject><subject>q-Bernstein polynomials</subject><subject>q-derivative</subject><subject>Sciences and techniques of general use</subject><issn>0170-4214</issn><issn>1099-1476</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10D1PAjEcx_HGaCKiiS-BxYSl2KfrXUdABRNQBxISl6bX9rR6D9geUd69JVxwcul_6Cff4QfANUYjjBC5rSo1woyLE9DDSAiIWcpPQQ_hFEFGMDsHFyF8IIQyjEkPDOfu7d36QeNNfEtXuXbwBSfW16G1rh40G-tV2_hwCc4KVQZ71d0-WD3cr6ZzuHiePU7HC6gp5wKKvDCcKJZnQhtsqCaFTRgzhlDGeJYghK1WRlFlkpzyPDrM4w8qRGIVp30wPGQ3vvna2tDKygVty1LVttkGiRHFJBMCiT-qfROCt4XceFcpv4tI7reQcQu53yLSm66qglZl4VWtXTh6wigTPM2igwf37Uq7-7cnl8tx1-28i2v9HL3yn5KnNE3k-mkmX9aTuzV7nckV_QV0m3rM</recordid><startdate>20110915</startdate><enddate>20110915</enddate><creator>Mahmudov, N. I.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20110915</creationdate><title>Higher order limit q-Bernstein operators</title><author>Mahmudov, N. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>central moment</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>higher order limit q-Bernstein operator</topic><topic>limit q-Bernstein operator</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operator theory</topic><topic>Operators</topic><topic>positive linear operator</topic><topic>q-Bernstein polynomials</topic><topic>q-derivative</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmudov, N. I.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmudov, N. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher order limit q-Bernstein operators</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2011-09-15</date><risdate>2011</risdate><volume>34</volume><issue>13</issue><spage>1618</spage><epage>1626</epage><pages>1618-1626</pages><issn>0170-4214</issn><issn>1099-1476</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>In this paper we give the estimates of the central moments for the limit q‐Bernstein operators. We introduce the higher order generalization of the limit q‐Bernstein operators and using the moment estimations study the approximation properties of these newly defined operators. It is shown that the higher order limit q‐Bernstein operators faster than the q‐Bernstein operators for the smooth functions defined on [0, 1]. Copyright © 2011 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.1469</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2011-09, Vol.34 (13), p.1618-1626 |
issn | 0170-4214 1099-1476 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031289909 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Approximation central moment Estimates Exact sciences and technology higher order limit q-Bernstein operator limit q-Bernstein operator Mathematical analysis Mathematics Operator theory Operators positive linear operator q-Bernstein polynomials q-derivative Sciences and techniques of general use |
title | Higher order limit q-Bernstein operators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20order%20limit%20q-Bernstein%20operators&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Mahmudov,%20N.%20I.&rft.date=2011-09-15&rft.volume=34&rft.issue=13&rft.spage=1618&rft.epage=1626&rft.pages=1618-1626&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.1469&rft_dat=%3Cproquest_cross%3E1031289909%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3669-9bfd62a4b89cd1d3c2fe544dd2344685001ecada3ad5b36bb89164460f95ea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1031289909&rft_id=info:pmid/&rfr_iscdi=true |