Loading…

Steady flow of a Williamson fluid past a porous plate

ABSTRACT This article presents the series solution for the steady magnetohydrodynamic (MHD) flow of a Williamson fluid past a porous plate. Both suction and injection cases are analyzed. The resulting nonlinear problem is solved by employing the homotopy analysis method (HAM). The influence of vario...

Full description

Saved in:
Bibliographic Details
Published in:Asia-Pacific journal of chemical engineering 2012-03, Vol.7 (2), p.302-306
Main Authors: Hayat, T., Khalid, Umbreen, Qasim, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3326-18e9b1df2fe01b9f03237b02e67929549da229c3f8b9ad0af6e0669d7048e11b3
cites cdi_FETCH-LOGICAL-c3326-18e9b1df2fe01b9f03237b02e67929549da229c3f8b9ad0af6e0669d7048e11b3
container_end_page 306
container_issue 2
container_start_page 302
container_title Asia-Pacific journal of chemical engineering
container_volume 7
creator Hayat, T.
Khalid, Umbreen
Qasim, M.
description ABSTRACT This article presents the series solution for the steady magnetohydrodynamic (MHD) flow of a Williamson fluid past a porous plate. Both suction and injection cases are analyzed. The resulting nonlinear problem is solved by employing the homotopy analysis method (HAM). The influence of various parameters of interest on the velocity is discussed by displaying graphs. A comparison with the case of Newtonian fluid is given. Copyright © 2010 Curtin University of Technology and John Wiley & Sons, Ltd.
doi_str_mv 10.1002/apj.496
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031294441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031294441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-18e9b1df2fe01b9f03237b02e67929549da229c3f8b9ad0af6e0669d7048e11b3</originalsourceid><addsrcrecordid>eNp10F1LwzAUBuAgCs4p_oXeKUhnvpoul2O4TR1TUZl3IW1PoDNbatIx9--NVHbn1Tm8PBwOL0KXBA8IxvRWN6sBl-II9YhkNKWEs-PDzrJTdBbCCuOMU8F7KHttQVf7xFi3S5xJdLKsra31OrhNDLd1lTQ6tDFvnHfbkDRWt3COToy2AS7-Zh-9T-7exrN0_jS9H4_mackYFSkZgixIZagBTAppMKMsLzAFkUsqMy4rTaksmRkWUldYGwFYCFnlmA-BkIL10XV3t_HuawuhVes6lGCt3kB8RhHMCJWccxLpVUdL70LwYFTj67X2-4jUbzEqFqNiMVHedHJXW9j_x9To-aHTaafr0ML3QWv_qUTO8kwtF1P18ZJN5CNZKMl-AJsCcOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031294441</pqid></control><display><type>article</type><title>Steady flow of a Williamson fluid past a porous plate</title><source>Wiley</source><creator>Hayat, T. ; Khalid, Umbreen ; Qasim, M.</creator><creatorcontrib>Hayat, T. ; Khalid, Umbreen ; Qasim, M.</creatorcontrib><description>ABSTRACT This article presents the series solution for the steady magnetohydrodynamic (MHD) flow of a Williamson fluid past a porous plate. Both suction and injection cases are analyzed. The resulting nonlinear problem is solved by employing the homotopy analysis method (HAM). The influence of various parameters of interest on the velocity is discussed by displaying graphs. A comparison with the case of Newtonian fluid is given. Copyright © 2010 Curtin University of Technology and John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1932-2135</identifier><identifier>ISSN: 1932-2143</identifier><identifier>EISSN: 1932-2143</identifier><identifier>DOI: 10.1002/apj.496</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Chemical engineering ; Fluid dynamics ; Fluid flow ; Fluids ; Graphs ; Ham ; homotopy analysis method ; Newtonian fluids ; nonlinear problem ; Porous plates ; Williamson fluid</subject><ispartof>Asia-Pacific journal of chemical engineering, 2012-03, Vol.7 (2), p.302-306</ispartof><rights>Copyright © 2010 Curtin University of Technology and John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-18e9b1df2fe01b9f03237b02e67929549da229c3f8b9ad0af6e0669d7048e11b3</citedby><cites>FETCH-LOGICAL-c3326-18e9b1df2fe01b9f03237b02e67929549da229c3f8b9ad0af6e0669d7048e11b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hayat, T.</creatorcontrib><creatorcontrib>Khalid, Umbreen</creatorcontrib><creatorcontrib>Qasim, M.</creatorcontrib><title>Steady flow of a Williamson fluid past a porous plate</title><title>Asia-Pacific journal of chemical engineering</title><addtitle>Asia-Pac. J. Chem. Eng</addtitle><description>ABSTRACT This article presents the series solution for the steady magnetohydrodynamic (MHD) flow of a Williamson fluid past a porous plate. Both suction and injection cases are analyzed. The resulting nonlinear problem is solved by employing the homotopy analysis method (HAM). The influence of various parameters of interest on the velocity is discussed by displaying graphs. A comparison with the case of Newtonian fluid is given. Copyright © 2010 Curtin University of Technology and John Wiley &amp; Sons, Ltd.</description><subject>Chemical engineering</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Graphs</subject><subject>Ham</subject><subject>homotopy analysis method</subject><subject>Newtonian fluids</subject><subject>nonlinear problem</subject><subject>Porous plates</subject><subject>Williamson fluid</subject><issn>1932-2135</issn><issn>1932-2143</issn><issn>1932-2143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10F1LwzAUBuAgCs4p_oXeKUhnvpoul2O4TR1TUZl3IW1PoDNbatIx9--NVHbn1Tm8PBwOL0KXBA8IxvRWN6sBl-II9YhkNKWEs-PDzrJTdBbCCuOMU8F7KHttQVf7xFi3S5xJdLKsra31OrhNDLd1lTQ6tDFvnHfbkDRWt3COToy2AS7-Zh-9T-7exrN0_jS9H4_mackYFSkZgixIZagBTAppMKMsLzAFkUsqMy4rTaksmRkWUldYGwFYCFnlmA-BkIL10XV3t_HuawuhVes6lGCt3kB8RhHMCJWccxLpVUdL70LwYFTj67X2-4jUbzEqFqNiMVHedHJXW9j_x9To-aHTaafr0ML3QWv_qUTO8kwtF1P18ZJN5CNZKMl-AJsCcOs</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Hayat, T.</creator><creator>Khalid, Umbreen</creator><creator>Qasim, M.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201203</creationdate><title>Steady flow of a Williamson fluid past a porous plate</title><author>Hayat, T. ; Khalid, Umbreen ; Qasim, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-18e9b1df2fe01b9f03237b02e67929549da229c3f8b9ad0af6e0669d7048e11b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Chemical engineering</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Graphs</topic><topic>Ham</topic><topic>homotopy analysis method</topic><topic>Newtonian fluids</topic><topic>nonlinear problem</topic><topic>Porous plates</topic><topic>Williamson fluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayat, T.</creatorcontrib><creatorcontrib>Khalid, Umbreen</creatorcontrib><creatorcontrib>Qasim, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Asia-Pacific journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayat, T.</au><au>Khalid, Umbreen</au><au>Qasim, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady flow of a Williamson fluid past a porous plate</atitle><jtitle>Asia-Pacific journal of chemical engineering</jtitle><addtitle>Asia-Pac. J. Chem. Eng</addtitle><date>2012-03</date><risdate>2012</risdate><volume>7</volume><issue>2</issue><spage>302</spage><epage>306</epage><pages>302-306</pages><issn>1932-2135</issn><issn>1932-2143</issn><eissn>1932-2143</eissn><abstract>ABSTRACT This article presents the series solution for the steady magnetohydrodynamic (MHD) flow of a Williamson fluid past a porous plate. Both suction and injection cases are analyzed. The resulting nonlinear problem is solved by employing the homotopy analysis method (HAM). The influence of various parameters of interest on the velocity is discussed by displaying graphs. A comparison with the case of Newtonian fluid is given. Copyright © 2010 Curtin University of Technology and John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/apj.496</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-2135
ispartof Asia-Pacific journal of chemical engineering, 2012-03, Vol.7 (2), p.302-306
issn 1932-2135
1932-2143
1932-2143
language eng
recordid cdi_proquest_miscellaneous_1031294441
source Wiley
subjects Chemical engineering
Fluid dynamics
Fluid flow
Fluids
Graphs
Ham
homotopy analysis method
Newtonian fluids
nonlinear problem
Porous plates
Williamson fluid
title Steady flow of a Williamson fluid past a porous plate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady%20flow%20of%20a%20Williamson%20fluid%20past%20a%20porous%20plate&rft.jtitle=Asia-Pacific%20journal%20of%20chemical%20engineering&rft.au=Hayat,%20T.&rft.date=2012-03&rft.volume=7&rft.issue=2&rft.spage=302&rft.epage=306&rft.pages=302-306&rft.issn=1932-2135&rft.eissn=1932-2143&rft_id=info:doi/10.1002/apj.496&rft_dat=%3Cproquest_cross%3E1031294441%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3326-18e9b1df2fe01b9f03237b02e67929549da229c3f8b9ad0af6e0669d7048e11b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1031294441&rft_id=info:pmid/&rfr_iscdi=true