Loading…

A new intelligent prediction system model-the compound pyramid model

A current development trend in research on intelligent systems is to optimize a general intelligent prediction system into an individuation intelligent prediction system that is applied in specialized fields. Protein structure prediction is a challenging international issue. In this paper, we propos...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Information sciences 2012-03, Vol.55 (3), p.723-736
Main Authors: Yang, BingRu, Qu, Wu, Wang, LiJun, Zhou, Ying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3
cites cdi_FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3
container_end_page 736
container_issue 3
container_start_page 723
container_title Science China. Information sciences
container_volume 55
creator Yang, BingRu
Qu, Wu
Wang, LiJun
Zhou, Ying
description A current development trend in research on intelligent systems is to optimize a general intelligent prediction system into an individuation intelligent prediction system that is applied in specialized fields. Protein structure prediction is a challenging international issue. In this paper, we propose a new intelligent prediction system model, designed as a multi-layer compound pyramid model, for predicting secondary protein structure. The model comprises four independent intelligent interfaces and several knowledge discovery methods. The model penetrates throughout the domain knowledge, with the effective attributes chosen by Causal Cellular Automata. Furthermore, a high pure structure database is constructed for training. On the RS126 dataset, the overall state per-residue accuracy, Q3, reached 83.99%, while on the CB513 dataset, Q3 reached 85.58%. Meanwhile, on the CASP8 sequences, the results are superior to those produced by other methods, such as Psipred, Jpred, APSSP2 and BehairPred. These results confirm that our method has a strong generalization ability, and that it provides a model for the construction of other intelligent systems.
doi_str_mv 10.1007/s11432-011-4442-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031297161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>40952350</cqvip_id><sourcerecordid>1031297161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWGofwN2IGzfR3GRmkixL_YWCGwV3YZpk2ikzyTSZIn17U0YUXHg3uZBzzj18CF0CuQVC-F0EyBnFBADneU4xnKAJiFJikCBP017yHHPGPs7RLMYtScMYoVxM0P08c_Yza9xg27ZZWzdkfbCm0UPjXRYPcbBd1nljWzxsbKZ91_u9M1l_CFXXmPHrAp3VVRvt7PudovfHh7fFM16-Pr0s5kusGS8GLCghK8E0l1xLwYGZCgSzIMt6VTNSaMo4CLqikhMNvCJgDNhK86JMbU3NpuhmzO2D3-1tHFTXRJ2KV876fVRAGCQzlJCk13-kW78PLrVTVCY2pBRCJBWMKh18jMHWqg9NV4VDilJHtGpEqxJadUSrjsl09MSkdWsbfpP_M119H9p4t94l38-lnMiCsoKwL1E5hNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918606888</pqid></control><display><type>article</type><title>A new intelligent prediction system model-the compound pyramid model</title><source>Springer Link</source><creator>Yang, BingRu ; Qu, Wu ; Wang, LiJun ; Zhou, Ying</creator><creatorcontrib>Yang, BingRu ; Qu, Wu ; Wang, LiJun ; Zhou, Ying</creatorcontrib><description>A current development trend in research on intelligent systems is to optimize a general intelligent prediction system into an individuation intelligent prediction system that is applied in specialized fields. Protein structure prediction is a challenging international issue. In this paper, we propose a new intelligent prediction system model, designed as a multi-layer compound pyramid model, for predicting secondary protein structure. The model comprises four independent intelligent interfaces and several knowledge discovery methods. The model penetrates throughout the domain knowledge, with the effective attributes chosen by Causal Cellular Automata. Furthermore, a high pure structure database is constructed for training. On the RS126 dataset, the overall state per-residue accuracy, Q3, reached 83.99%, while on the CB513 dataset, Q3 reached 85.58%. Meanwhile, on the CASP8 sequences, the results are superior to those produced by other methods, such as Psipred, Jpred, APSSP2 and BehairPred. These results confirm that our method has a strong generalization ability, and that it provides a model for the construction of other intelligent systems.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-011-4442-1</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Cellular automata ; Cellular structure ; China ; Computer Science ; Construction ; Datasets ; Information Systems and Communication Service ; Intelligent systems ; Mathematical models ; Multilayers ; Predictions ; Proteins ; Pyramids ; Research Paper ; 元胞自动机 ; 多层复合 ; 智能系统 ; 智能预报系统 ; 结构数据库 ; 蛋白质结构预测 ; 金字塔模型 ; 预测系统模型</subject><ispartof>Science China. Information sciences, 2012-03, Vol.55 (3), p.723-736</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3</citedby><cites>FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, BingRu</creatorcontrib><creatorcontrib>Qu, Wu</creatorcontrib><creatorcontrib>Wang, LiJun</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><title>A new intelligent prediction system model-the compound pyramid model</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>A current development trend in research on intelligent systems is to optimize a general intelligent prediction system into an individuation intelligent prediction system that is applied in specialized fields. Protein structure prediction is a challenging international issue. In this paper, we propose a new intelligent prediction system model, designed as a multi-layer compound pyramid model, for predicting secondary protein structure. The model comprises four independent intelligent interfaces and several knowledge discovery methods. The model penetrates throughout the domain knowledge, with the effective attributes chosen by Causal Cellular Automata. Furthermore, a high pure structure database is constructed for training. On the RS126 dataset, the overall state per-residue accuracy, Q3, reached 83.99%, while on the CB513 dataset, Q3 reached 85.58%. Meanwhile, on the CASP8 sequences, the results are superior to those produced by other methods, such as Psipred, Jpred, APSSP2 and BehairPred. These results confirm that our method has a strong generalization ability, and that it provides a model for the construction of other intelligent systems.</description><subject>Cellular automata</subject><subject>Cellular structure</subject><subject>China</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Datasets</subject><subject>Information Systems and Communication Service</subject><subject>Intelligent systems</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Predictions</subject><subject>Proteins</subject><subject>Pyramids</subject><subject>Research Paper</subject><subject>元胞自动机</subject><subject>多层复合</subject><subject>智能系统</subject><subject>智能预报系统</subject><subject>结构数据库</subject><subject>蛋白质结构预测</subject><subject>金字塔模型</subject><subject>预测系统模型</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWGofwN2IGzfR3GRmkixL_YWCGwV3YZpk2ikzyTSZIn17U0YUXHg3uZBzzj18CF0CuQVC-F0EyBnFBADneU4xnKAJiFJikCBP017yHHPGPs7RLMYtScMYoVxM0P08c_Yza9xg27ZZWzdkfbCm0UPjXRYPcbBd1nljWzxsbKZ91_u9M1l_CFXXmPHrAp3VVRvt7PudovfHh7fFM16-Pr0s5kusGS8GLCghK8E0l1xLwYGZCgSzIMt6VTNSaMo4CLqikhMNvCJgDNhK86JMbU3NpuhmzO2D3-1tHFTXRJ2KV876fVRAGCQzlJCk13-kW78PLrVTVCY2pBRCJBWMKh18jMHWqg9NV4VDilJHtGpEqxJadUSrjsl09MSkdWsbfpP_M119H9p4t94l38-lnMiCsoKwL1E5hNs</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Yang, BingRu</creator><creator>Qu, Wu</creator><creator>Wang, LiJun</creator><creator>Zhou, Ying</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120301</creationdate><title>A new intelligent prediction system model-the compound pyramid model</title><author>Yang, BingRu ; Qu, Wu ; Wang, LiJun ; Zhou, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cellular automata</topic><topic>Cellular structure</topic><topic>China</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Datasets</topic><topic>Information Systems and Communication Service</topic><topic>Intelligent systems</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Predictions</topic><topic>Proteins</topic><topic>Pyramids</topic><topic>Research Paper</topic><topic>元胞自动机</topic><topic>多层复合</topic><topic>智能系统</topic><topic>智能预报系统</topic><topic>结构数据库</topic><topic>蛋白质结构预测</topic><topic>金字塔模型</topic><topic>预测系统模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, BingRu</creatorcontrib><creatorcontrib>Qu, Wu</creatorcontrib><creatorcontrib>Wang, LiJun</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, BingRu</au><au>Qu, Wu</au><au>Wang, LiJun</au><au>Zhou, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new intelligent prediction system model-the compound pyramid model</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>55</volume><issue>3</issue><spage>723</spage><epage>736</epage><pages>723-736</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>A current development trend in research on intelligent systems is to optimize a general intelligent prediction system into an individuation intelligent prediction system that is applied in specialized fields. Protein structure prediction is a challenging international issue. In this paper, we propose a new intelligent prediction system model, designed as a multi-layer compound pyramid model, for predicting secondary protein structure. The model comprises four independent intelligent interfaces and several knowledge discovery methods. The model penetrates throughout the domain knowledge, with the effective attributes chosen by Causal Cellular Automata. Furthermore, a high pure structure database is constructed for training. On the RS126 dataset, the overall state per-residue accuracy, Q3, reached 83.99%, while on the CB513 dataset, Q3 reached 85.58%. Meanwhile, on the CASP8 sequences, the results are superior to those produced by other methods, such as Psipred, Jpred, APSSP2 and BehairPred. These results confirm that our method has a strong generalization ability, and that it provides a model for the construction of other intelligent systems.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11432-011-4442-1</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2012-03, Vol.55 (3), p.723-736
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_miscellaneous_1031297161
source Springer Link
subjects Cellular automata
Cellular structure
China
Computer Science
Construction
Datasets
Information Systems and Communication Service
Intelligent systems
Mathematical models
Multilayers
Predictions
Proteins
Pyramids
Research Paper
元胞自动机
多层复合
智能系统
智能预报系统
结构数据库
蛋白质结构预测
金字塔模型
预测系统模型
title A new intelligent prediction system model-the compound pyramid model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20intelligent%20prediction%20system%20model-the%20compound%20pyramid%20model&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Yang,%20BingRu&rft.date=2012-03-01&rft.volume=55&rft.issue=3&rft.spage=723&rft.epage=736&rft.pages=723-736&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-011-4442-1&rft_dat=%3Cproquest_cross%3E1031297161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918606888&rft_id=info:pmid/&rft_cqvip_id=40952350&rfr_iscdi=true