Loading…
A new intelligent prediction system model-the compound pyramid model
A current development trend in research on intelligent systems is to optimize a general intelligent prediction system into an individuation intelligent prediction system that is applied in specialized fields. Protein structure prediction is a challenging international issue. In this paper, we propos...
Saved in:
Published in: | Science China. Information sciences 2012-03, Vol.55 (3), p.723-736 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3 |
container_end_page | 736 |
container_issue | 3 |
container_start_page | 723 |
container_title | Science China. Information sciences |
container_volume | 55 |
creator | Yang, BingRu Qu, Wu Wang, LiJun Zhou, Ying |
description | A current development trend in research on intelligent systems is to optimize a general intelligent prediction system into an individuation intelligent prediction system that is applied in specialized fields. Protein structure prediction is a challenging international issue. In this paper, we propose a new intelligent prediction system model, designed as a multi-layer compound pyramid model, for predicting secondary protein structure. The model comprises four independent intelligent interfaces and several knowledge discovery methods. The model penetrates throughout the domain knowledge, with the effective attributes chosen by Causal Cellular Automata. Furthermore, a high pure structure database is constructed for training. On the RS126 dataset, the overall state per-residue accuracy, Q3, reached 83.99%, while on the CB513 dataset, Q3 reached 85.58%. Meanwhile, on the CASP8 sequences, the results are superior to those produced by other methods, such as Psipred, Jpred, APSSP2 and BehairPred. These results confirm that our method has a strong generalization ability, and that it provides a model for the construction of other intelligent systems. |
doi_str_mv | 10.1007/s11432-011-4442-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031297161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>40952350</cqvip_id><sourcerecordid>1031297161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWGofwN2IGzfR3GRmkixL_YWCGwV3YZpk2ikzyTSZIn17U0YUXHg3uZBzzj18CF0CuQVC-F0EyBnFBADneU4xnKAJiFJikCBP017yHHPGPs7RLMYtScMYoVxM0P08c_Yza9xg27ZZWzdkfbCm0UPjXRYPcbBd1nljWzxsbKZ91_u9M1l_CFXXmPHrAp3VVRvt7PudovfHh7fFM16-Pr0s5kusGS8GLCghK8E0l1xLwYGZCgSzIMt6VTNSaMo4CLqikhMNvCJgDNhK86JMbU3NpuhmzO2D3-1tHFTXRJ2KV876fVRAGCQzlJCk13-kW78PLrVTVCY2pBRCJBWMKh18jMHWqg9NV4VDilJHtGpEqxJadUSrjsl09MSkdWsbfpP_M119H9p4t94l38-lnMiCsoKwL1E5hNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918606888</pqid></control><display><type>article</type><title>A new intelligent prediction system model-the compound pyramid model</title><source>Springer Link</source><creator>Yang, BingRu ; Qu, Wu ; Wang, LiJun ; Zhou, Ying</creator><creatorcontrib>Yang, BingRu ; Qu, Wu ; Wang, LiJun ; Zhou, Ying</creatorcontrib><description>A current development trend in research on intelligent systems is to optimize a general intelligent prediction system into an individuation intelligent prediction system that is applied in specialized fields. Protein structure prediction is a challenging international issue. In this paper, we propose a new intelligent prediction system model, designed as a multi-layer compound pyramid model, for predicting secondary protein structure. The model comprises four independent intelligent interfaces and several knowledge discovery methods. The model penetrates throughout the domain knowledge, with the effective attributes chosen by Causal Cellular Automata. Furthermore, a high pure structure database is constructed for training. On the RS126 dataset, the overall state per-residue accuracy, Q3, reached 83.99%, while on the CB513 dataset, Q3 reached 85.58%. Meanwhile, on the CASP8 sequences, the results are superior to those produced by other methods, such as Psipred, Jpred, APSSP2 and BehairPred. These results confirm that our method has a strong generalization ability, and that it provides a model for the construction of other intelligent systems.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-011-4442-1</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Cellular automata ; Cellular structure ; China ; Computer Science ; Construction ; Datasets ; Information Systems and Communication Service ; Intelligent systems ; Mathematical models ; Multilayers ; Predictions ; Proteins ; Pyramids ; Research Paper ; 元胞自动机 ; 多层复合 ; 智能系统 ; 智能预报系统 ; 结构数据库 ; 蛋白质结构预测 ; 金字塔模型 ; 预测系统模型</subject><ispartof>Science China. Information sciences, 2012-03, Vol.55 (3), p.723-736</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3</citedby><cites>FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84009A/84009A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, BingRu</creatorcontrib><creatorcontrib>Qu, Wu</creatorcontrib><creatorcontrib>Wang, LiJun</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><title>A new intelligent prediction system model-the compound pyramid model</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><description>A current development trend in research on intelligent systems is to optimize a general intelligent prediction system into an individuation intelligent prediction system that is applied in specialized fields. Protein structure prediction is a challenging international issue. In this paper, we propose a new intelligent prediction system model, designed as a multi-layer compound pyramid model, for predicting secondary protein structure. The model comprises four independent intelligent interfaces and several knowledge discovery methods. The model penetrates throughout the domain knowledge, with the effective attributes chosen by Causal Cellular Automata. Furthermore, a high pure structure database is constructed for training. On the RS126 dataset, the overall state per-residue accuracy, Q3, reached 83.99%, while on the CB513 dataset, Q3 reached 85.58%. Meanwhile, on the CASP8 sequences, the results are superior to those produced by other methods, such as Psipred, Jpred, APSSP2 and BehairPred. These results confirm that our method has a strong generalization ability, and that it provides a model for the construction of other intelligent systems.</description><subject>Cellular automata</subject><subject>Cellular structure</subject><subject>China</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Datasets</subject><subject>Information Systems and Communication Service</subject><subject>Intelligent systems</subject><subject>Mathematical models</subject><subject>Multilayers</subject><subject>Predictions</subject><subject>Proteins</subject><subject>Pyramids</subject><subject>Research Paper</subject><subject>元胞自动机</subject><subject>多层复合</subject><subject>智能系统</subject><subject>智能预报系统</subject><subject>结构数据库</subject><subject>蛋白质结构预测</subject><subject>金字塔模型</subject><subject>预测系统模型</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWGofwN2IGzfR3GRmkixL_YWCGwV3YZpk2ikzyTSZIn17U0YUXHg3uZBzzj18CF0CuQVC-F0EyBnFBADneU4xnKAJiFJikCBP017yHHPGPs7RLMYtScMYoVxM0P08c_Yza9xg27ZZWzdkfbCm0UPjXRYPcbBd1nljWzxsbKZ91_u9M1l_CFXXmPHrAp3VVRvt7PudovfHh7fFM16-Pr0s5kusGS8GLCghK8E0l1xLwYGZCgSzIMt6VTNSaMo4CLqikhMNvCJgDNhK86JMbU3NpuhmzO2D3-1tHFTXRJ2KV876fVRAGCQzlJCk13-kW78PLrVTVCY2pBRCJBWMKh18jMHWqg9NV4VDilJHtGpEqxJadUSrjsl09MSkdWsbfpP_M119H9p4t94l38-lnMiCsoKwL1E5hNs</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Yang, BingRu</creator><creator>Qu, Wu</creator><creator>Wang, LiJun</creator><creator>Zhou, Ying</creator><general>SP Science China Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120301</creationdate><title>A new intelligent prediction system model-the compound pyramid model</title><author>Yang, BingRu ; Qu, Wu ; Wang, LiJun ; Zhou, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cellular automata</topic><topic>Cellular structure</topic><topic>China</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Datasets</topic><topic>Information Systems and Communication Service</topic><topic>Intelligent systems</topic><topic>Mathematical models</topic><topic>Multilayers</topic><topic>Predictions</topic><topic>Proteins</topic><topic>Pyramids</topic><topic>Research Paper</topic><topic>元胞自动机</topic><topic>多层复合</topic><topic>智能系统</topic><topic>智能预报系统</topic><topic>结构数据库</topic><topic>蛋白质结构预测</topic><topic>金字塔模型</topic><topic>预测系统模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, BingRu</creatorcontrib><creatorcontrib>Qu, Wu</creatorcontrib><creatorcontrib>Wang, LiJun</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, BingRu</au><au>Qu, Wu</au><au>Wang, LiJun</au><au>Zhou, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new intelligent prediction system model-the compound pyramid model</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><addtitle>SCIENCE CHINA Information Sciences</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>55</volume><issue>3</issue><spage>723</spage><epage>736</epage><pages>723-736</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>A current development trend in research on intelligent systems is to optimize a general intelligent prediction system into an individuation intelligent prediction system that is applied in specialized fields. Protein structure prediction is a challenging international issue. In this paper, we propose a new intelligent prediction system model, designed as a multi-layer compound pyramid model, for predicting secondary protein structure. The model comprises four independent intelligent interfaces and several knowledge discovery methods. The model penetrates throughout the domain knowledge, with the effective attributes chosen by Causal Cellular Automata. Furthermore, a high pure structure database is constructed for training. On the RS126 dataset, the overall state per-residue accuracy, Q3, reached 83.99%, while on the CB513 dataset, Q3 reached 85.58%. Meanwhile, on the CASP8 sequences, the results are superior to those produced by other methods, such as Psipred, Jpred, APSSP2 and BehairPred. These results confirm that our method has a strong generalization ability, and that it provides a model for the construction of other intelligent systems.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11432-011-4442-1</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-733X |
ispartof | Science China. Information sciences, 2012-03, Vol.55 (3), p.723-736 |
issn | 1674-733X 1869-1919 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031297161 |
source | Springer Link |
subjects | Cellular automata Cellular structure China Computer Science Construction Datasets Information Systems and Communication Service Intelligent systems Mathematical models Multilayers Predictions Proteins Pyramids Research Paper 元胞自动机 多层复合 智能系统 智能预报系统 结构数据库 蛋白质结构预测 金字塔模型 预测系统模型 |
title | A new intelligent prediction system model-the compound pyramid model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20intelligent%20prediction%20system%20model-the%20compound%20pyramid%20model&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Yang,%20BingRu&rft.date=2012-03-01&rft.volume=55&rft.issue=3&rft.spage=723&rft.epage=736&rft.pages=723-736&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-011-4442-1&rft_dat=%3Cproquest_cross%3E1031297161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-8200b83c797c98713da183e196fbf305c237182b2970c17a01dd1eac756302df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918606888&rft_id=info:pmid/&rft_cqvip_id=40952350&rfr_iscdi=true |