Loading…
Concavity of the auxiliary function appearing in quantum reliability function
Reliability functions characterize the asymptotic behavior of the error probability for transmission of data on a channel. Holevo introduced the quantum channel, and gave an expression for a random-coding lower bound involving an auxiliary function. Holevo, Ogawa, and Nagaoka conjectured that this a...
Saved in:
Published in: | IEEE transactions on information theory 2006-07, Vol.52 (7), p.3310-3313 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3 |
container_end_page | 3313 |
container_issue | 7 |
container_start_page | 3310 |
container_title | IEEE transactions on information theory |
container_volume | 52 |
creator | Jun Ichi Fujii Nakamoto, R. Yanagi, K. |
description | Reliability functions characterize the asymptotic behavior of the error probability for transmission of data on a channel. Holevo introduced the quantum channel, and gave an expression for a random-coding lower bound involving an auxiliary function. Holevo, Ogawa, and Nagaoka conjectured that this auxiliary function is concave. Here we give a proof of this conjecture. |
doi_str_mv | 10.1109/TIT.2006.876248 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031300289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1650375</ieee_id><sourcerecordid>1031300289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EEqUwM7B4ZEl7dvyVEVVQKhWxlNlyXRuM0iSNHUT_Pa6C1Ol00vO-unsQuicwIwSq-Wa1mVEAMVNSUKYu0IRwLotKcHaJJgBEFRVj6hrdxPidV8YJnaC3RdtY8xPSEbcepy-HzfAb6mD6I_ZDY1NoG2y6zpk-NJ84NPgwmCYNe9y7TG0zms7kLbrypo7u7n9O0cfL82bxWqzfl6vF07qwtGKpUIKWwsCWe2uo9yLfYoSkTji19RJ2zlqQhAjGJeEgK_BytxPUeFBWKmHLKXoce7u-PQwuJr0P0bq6No1rh6gJlKQEoKrK6HxEbd_G2Duvuz7s83sZ0idxOovTJ3F6FJcTD2MiOOfOtOBQSl7-AW5KakU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031300289</pqid></control><display><type>article</type><title>Concavity of the auxiliary function appearing in quantum reliability function</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jun Ichi Fujii ; Nakamoto, R. ; Yanagi, K.</creator><creatorcontrib>Jun Ichi Fujii ; Nakamoto, R. ; Yanagi, K.</creatorcontrib><description>Reliability functions characterize the asymptotic behavior of the error probability for transmission of data on a channel. Holevo introduced the quantum channel, and gave an expression for a random-coding lower bound involving an auxiliary function. Holevo, Ogawa, and Nagaoka conjectured that this auxiliary function is concave. Here we give a proof of this conjecture.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2006.876248</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic properties ; Australia ; Capacity planning ; Channel coding ; Channels ; Cities and towns ; Concavity ; Error probability ; Errors ; Information theory ; Lower bounds ; Probability distribution ; Proving ; Quantum information theory ; Quantum mechanics ; quantum reliability function ; random coding exponent ; Reliability theory</subject><ispartof>IEEE transactions on information theory, 2006-07, Vol.52 (7), p.3310-3313</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3</citedby><cites>FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1650375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Jun Ichi Fujii</creatorcontrib><creatorcontrib>Nakamoto, R.</creatorcontrib><creatorcontrib>Yanagi, K.</creatorcontrib><title>Concavity of the auxiliary function appearing in quantum reliability function</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Reliability functions characterize the asymptotic behavior of the error probability for transmission of data on a channel. Holevo introduced the quantum channel, and gave an expression for a random-coding lower bound involving an auxiliary function. Holevo, Ogawa, and Nagaoka conjectured that this auxiliary function is concave. Here we give a proof of this conjecture.</description><subject>Asymptotic properties</subject><subject>Australia</subject><subject>Capacity planning</subject><subject>Channel coding</subject><subject>Channels</subject><subject>Cities and towns</subject><subject>Concavity</subject><subject>Error probability</subject><subject>Errors</subject><subject>Information theory</subject><subject>Lower bounds</subject><subject>Probability distribution</subject><subject>Proving</subject><subject>Quantum information theory</subject><subject>Quantum mechanics</subject><subject>quantum reliability function</subject><subject>random coding exponent</subject><subject>Reliability theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EEqUwM7B4ZEl7dvyVEVVQKhWxlNlyXRuM0iSNHUT_Pa6C1Ol00vO-unsQuicwIwSq-Wa1mVEAMVNSUKYu0IRwLotKcHaJJgBEFRVj6hrdxPidV8YJnaC3RdtY8xPSEbcepy-HzfAb6mD6I_ZDY1NoG2y6zpk-NJ84NPgwmCYNe9y7TG0zms7kLbrypo7u7n9O0cfL82bxWqzfl6vF07qwtGKpUIKWwsCWe2uo9yLfYoSkTji19RJ2zlqQhAjGJeEgK_BytxPUeFBWKmHLKXoce7u-PQwuJr0P0bq6No1rh6gJlKQEoKrK6HxEbd_G2Duvuz7s83sZ0idxOovTJ3F6FJcTD2MiOOfOtOBQSl7-AW5KakU</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Jun Ichi Fujii</creator><creator>Nakamoto, R.</creator><creator>Yanagi, K.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060701</creationdate><title>Concavity of the auxiliary function appearing in quantum reliability function</title><author>Jun Ichi Fujii ; Nakamoto, R. ; Yanagi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Asymptotic properties</topic><topic>Australia</topic><topic>Capacity planning</topic><topic>Channel coding</topic><topic>Channels</topic><topic>Cities and towns</topic><topic>Concavity</topic><topic>Error probability</topic><topic>Errors</topic><topic>Information theory</topic><topic>Lower bounds</topic><topic>Probability distribution</topic><topic>Proving</topic><topic>Quantum information theory</topic><topic>Quantum mechanics</topic><topic>quantum reliability function</topic><topic>random coding exponent</topic><topic>Reliability theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun Ichi Fujii</creatorcontrib><creatorcontrib>Nakamoto, R.</creatorcontrib><creatorcontrib>Yanagi, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun Ichi Fujii</au><au>Nakamoto, R.</au><au>Yanagi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concavity of the auxiliary function appearing in quantum reliability function</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2006-07-01</date><risdate>2006</risdate><volume>52</volume><issue>7</issue><spage>3310</spage><epage>3313</epage><pages>3310-3313</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Reliability functions characterize the asymptotic behavior of the error probability for transmission of data on a channel. Holevo introduced the quantum channel, and gave an expression for a random-coding lower bound involving an auxiliary function. Holevo, Ogawa, and Nagaoka conjectured that this auxiliary function is concave. Here we give a proof of this conjecture.</abstract><pub>IEEE</pub><doi>10.1109/TIT.2006.876248</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2006-07, Vol.52 (7), p.3310-3313 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031300289 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Asymptotic properties Australia Capacity planning Channel coding Channels Cities and towns Concavity Error probability Errors Information theory Lower bounds Probability distribution Proving Quantum information theory Quantum mechanics quantum reliability function random coding exponent Reliability theory |
title | Concavity of the auxiliary function appearing in quantum reliability function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concavity%20of%20the%20auxiliary%20function%20appearing%20in%20quantum%20reliability%20function&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Jun%20Ichi%20Fujii&rft.date=2006-07-01&rft.volume=52&rft.issue=7&rft.spage=3310&rft.epage=3313&rft.pages=3310-3313&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2006.876248&rft_dat=%3Cproquest_ieee_%3E1031300289%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1031300289&rft_id=info:pmid/&rft_ieee_id=1650375&rfr_iscdi=true |