Loading…

Concavity of the auxiliary function appearing in quantum reliability function

Reliability functions characterize the asymptotic behavior of the error probability for transmission of data on a channel. Holevo introduced the quantum channel, and gave an expression for a random-coding lower bound involving an auxiliary function. Holevo, Ogawa, and Nagaoka conjectured that this a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2006-07, Vol.52 (7), p.3310-3313
Main Authors: Jun Ichi Fujii, Nakamoto, R., Yanagi, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3
cites cdi_FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3
container_end_page 3313
container_issue 7
container_start_page 3310
container_title IEEE transactions on information theory
container_volume 52
creator Jun Ichi Fujii
Nakamoto, R.
Yanagi, K.
description Reliability functions characterize the asymptotic behavior of the error probability for transmission of data on a channel. Holevo introduced the quantum channel, and gave an expression for a random-coding lower bound involving an auxiliary function. Holevo, Ogawa, and Nagaoka conjectured that this auxiliary function is concave. Here we give a proof of this conjecture.
doi_str_mv 10.1109/TIT.2006.876248
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031300289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1650375</ieee_id><sourcerecordid>1031300289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EEqUwM7B4ZEl7dvyVEVVQKhWxlNlyXRuM0iSNHUT_Pa6C1Ol00vO-unsQuicwIwSq-Wa1mVEAMVNSUKYu0IRwLotKcHaJJgBEFRVj6hrdxPidV8YJnaC3RdtY8xPSEbcepy-HzfAb6mD6I_ZDY1NoG2y6zpk-NJ84NPgwmCYNe9y7TG0zms7kLbrypo7u7n9O0cfL82bxWqzfl6vF07qwtGKpUIKWwsCWe2uo9yLfYoSkTji19RJ2zlqQhAjGJeEgK_BytxPUeFBWKmHLKXoce7u-PQwuJr0P0bq6No1rh6gJlKQEoKrK6HxEbd_G2Duvuz7s83sZ0idxOovTJ3F6FJcTD2MiOOfOtOBQSl7-AW5KakU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031300289</pqid></control><display><type>article</type><title>Concavity of the auxiliary function appearing in quantum reliability function</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Jun Ichi Fujii ; Nakamoto, R. ; Yanagi, K.</creator><creatorcontrib>Jun Ichi Fujii ; Nakamoto, R. ; Yanagi, K.</creatorcontrib><description>Reliability functions characterize the asymptotic behavior of the error probability for transmission of data on a channel. Holevo introduced the quantum channel, and gave an expression for a random-coding lower bound involving an auxiliary function. Holevo, Ogawa, and Nagaoka conjectured that this auxiliary function is concave. Here we give a proof of this conjecture.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2006.876248</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Asymptotic properties ; Australia ; Capacity planning ; Channel coding ; Channels ; Cities and towns ; Concavity ; Error probability ; Errors ; Information theory ; Lower bounds ; Probability distribution ; Proving ; Quantum information theory ; Quantum mechanics ; quantum reliability function ; random coding exponent ; Reliability theory</subject><ispartof>IEEE transactions on information theory, 2006-07, Vol.52 (7), p.3310-3313</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3</citedby><cites>FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1650375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Jun Ichi Fujii</creatorcontrib><creatorcontrib>Nakamoto, R.</creatorcontrib><creatorcontrib>Yanagi, K.</creatorcontrib><title>Concavity of the auxiliary function appearing in quantum reliability function</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Reliability functions characterize the asymptotic behavior of the error probability for transmission of data on a channel. Holevo introduced the quantum channel, and gave an expression for a random-coding lower bound involving an auxiliary function. Holevo, Ogawa, and Nagaoka conjectured that this auxiliary function is concave. Here we give a proof of this conjecture.</description><subject>Asymptotic properties</subject><subject>Australia</subject><subject>Capacity planning</subject><subject>Channel coding</subject><subject>Channels</subject><subject>Cities and towns</subject><subject>Concavity</subject><subject>Error probability</subject><subject>Errors</subject><subject>Information theory</subject><subject>Lower bounds</subject><subject>Probability distribution</subject><subject>Proving</subject><subject>Quantum information theory</subject><subject>Quantum mechanics</subject><subject>quantum reliability function</subject><subject>random coding exponent</subject><subject>Reliability theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EEqUwM7B4ZEl7dvyVEVVQKhWxlNlyXRuM0iSNHUT_Pa6C1Ol00vO-unsQuicwIwSq-Wa1mVEAMVNSUKYu0IRwLotKcHaJJgBEFRVj6hrdxPidV8YJnaC3RdtY8xPSEbcepy-HzfAb6mD6I_ZDY1NoG2y6zpk-NJ84NPgwmCYNe9y7TG0zms7kLbrypo7u7n9O0cfL82bxWqzfl6vF07qwtGKpUIKWwsCWe2uo9yLfYoSkTji19RJ2zlqQhAjGJeEgK_BytxPUeFBWKmHLKXoce7u-PQwuJr0P0bq6No1rh6gJlKQEoKrK6HxEbd_G2Duvuz7s83sZ0idxOovTJ3F6FJcTD2MiOOfOtOBQSl7-AW5KakU</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>Jun Ichi Fujii</creator><creator>Nakamoto, R.</creator><creator>Yanagi, K.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060701</creationdate><title>Concavity of the auxiliary function appearing in quantum reliability function</title><author>Jun Ichi Fujii ; Nakamoto, R. ; Yanagi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Asymptotic properties</topic><topic>Australia</topic><topic>Capacity planning</topic><topic>Channel coding</topic><topic>Channels</topic><topic>Cities and towns</topic><topic>Concavity</topic><topic>Error probability</topic><topic>Errors</topic><topic>Information theory</topic><topic>Lower bounds</topic><topic>Probability distribution</topic><topic>Proving</topic><topic>Quantum information theory</topic><topic>Quantum mechanics</topic><topic>quantum reliability function</topic><topic>random coding exponent</topic><topic>Reliability theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun Ichi Fujii</creatorcontrib><creatorcontrib>Nakamoto, R.</creatorcontrib><creatorcontrib>Yanagi, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun Ichi Fujii</au><au>Nakamoto, R.</au><au>Yanagi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concavity of the auxiliary function appearing in quantum reliability function</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2006-07-01</date><risdate>2006</risdate><volume>52</volume><issue>7</issue><spage>3310</spage><epage>3313</epage><pages>3310-3313</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Reliability functions characterize the asymptotic behavior of the error probability for transmission of data on a channel. Holevo introduced the quantum channel, and gave an expression for a random-coding lower bound involving an auxiliary function. Holevo, Ogawa, and Nagaoka conjectured that this auxiliary function is concave. Here we give a proof of this conjecture.</abstract><pub>IEEE</pub><doi>10.1109/TIT.2006.876248</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2006-07, Vol.52 (7), p.3310-3313
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_1031300289
source IEEE Electronic Library (IEL) Journals
subjects Asymptotic properties
Australia
Capacity planning
Channel coding
Channels
Cities and towns
Concavity
Error probability
Errors
Information theory
Lower bounds
Probability distribution
Proving
Quantum information theory
Quantum mechanics
quantum reliability function
random coding exponent
Reliability theory
title Concavity of the auxiliary function appearing in quantum reliability function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concavity%20of%20the%20auxiliary%20function%20appearing%20in%20quantum%20reliability%20function&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Jun%20Ichi%20Fujii&rft.date=2006-07-01&rft.volume=52&rft.issue=7&rft.spage=3310&rft.epage=3313&rft.pages=3310-3313&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2006.876248&rft_dat=%3Cproquest_ieee_%3E1031300289%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-86236a0b5fca2ff6145a672e6e8bf70decc07116457150790f7dd62af08c786c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1031300289&rft_id=info:pmid/&rft_ieee_id=1650375&rfr_iscdi=true