Loading…

Parameters estimation using sliding mode observer with shift operator

In different areas of engineering, mathematical models are used to describe real life phenomena and experiments are conducted to validate them. It is common that these models may contain a number of parameters that cannot be measured directly or calculated. Thus, parameter estimation is an important...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Franklin Institute 2012-05, Vol.349 (4), p.1509-1525
Main Authors: Al-Hosani, Khalifa, Utkin, Vadim I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-754fa04d91be93f681ffcf8a0d53315e6df8af0a142f089757a1fe23b39a8093
cites cdi_FETCH-LOGICAL-c348t-754fa04d91be93f681ffcf8a0d53315e6df8af0a142f089757a1fe23b39a8093
container_end_page 1525
container_issue 4
container_start_page 1509
container_title Journal of the Franklin Institute
container_volume 349
creator Al-Hosani, Khalifa
Utkin, Vadim I.
description In different areas of engineering, mathematical models are used to describe real life phenomena and experiments are conducted to validate them. It is common that these models may contain a number of parameters that cannot be measured directly or calculated. Thus, parameter estimation is an important step in the process of modeling based on empirical data of the system. In the control system’s literature, one can find considerable amount of research in the area of system parameters identification. Most of these techniques are based on minimizing the estimation error in some statistical framework such as least square error based methods. In most cases, using these techniques, one can prove the uniform exponential stability of the state and parameter estimation error, but the convergence rate can be too low. However, when designing control systems, knowledge of unknown immeasurable (or even time varying) parameters might be crucial for the operation of the controller and thus have to be accurately estimated with a desired rate of convergence. In this paper, we demonstrate a way to provide an estimation technique with tunable convergence rate using sliding mode with linear operators such as time delay.
doi_str_mv 10.1016/j.jfranklin.2011.05.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031302323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003211001116</els_id><sourcerecordid>1031302323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-754fa04d91be93f681ffcf8a0d53315e6df8af0a142f089757a1fe23b39a8093</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKu_wSzdzHiTzHNZSn2AoIvuQzq5sRlnJjVJK_57UypuXV0OfOdwzyHklkHOgFX3fd4br6aPwU45B8ZyKHMAfkZmrKnbjFetOCczSGgGIPgluQqhT7JmADOyelNejRjRB4oh2lFF6ya6D3Z6p2Gw-nhHp5G6TUB_QE-_bNzSsLUmUrdDr6Lz1-TCqCHgze-dk_XDar18yl5eH5-Xi5esE0UTs7osjIJCt2yDrTBVw4zpTKNAl0KwEiudhAHFCm6gaeuyVswgFxvRqgZaMSd3p9idd5_79K4cbehwGNSEbh8kA8EEcMFFQusT2nkXgkcjdz6V898JksfdZC__dpPH3SSUMu2WnIuTE1ORg0UvQ2dx6lBbj12U2tl_M34AD-d7vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031302323</pqid></control><display><type>article</type><title>Parameters estimation using sliding mode observer with shift operator</title><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Al-Hosani, Khalifa ; Utkin, Vadim I.</creator><creatorcontrib>Al-Hosani, Khalifa ; Utkin, Vadim I.</creatorcontrib><description>In different areas of engineering, mathematical models are used to describe real life phenomena and experiments are conducted to validate them. It is common that these models may contain a number of parameters that cannot be measured directly or calculated. Thus, parameter estimation is an important step in the process of modeling based on empirical data of the system. In the control system’s literature, one can find considerable amount of research in the area of system parameters identification. Most of these techniques are based on minimizing the estimation error in some statistical framework such as least square error based methods. In most cases, using these techniques, one can prove the uniform exponential stability of the state and parameter estimation error, but the convergence rate can be too low. However, when designing control systems, knowledge of unknown immeasurable (or even time varying) parameters might be crucial for the operation of the controller and thus have to be accurately estimated with a desired rate of convergence. In this paper, we demonstrate a way to provide an estimation technique with tunable convergence rate using sliding mode with linear operators such as time delay.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>DOI: 10.1016/j.jfranklin.2011.05.002</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Control systems ; Convergence ; Errors ; Least squares method ; Mathematical models ; Parameter estimation ; Parameter identification ; Sliding mode</subject><ispartof>Journal of the Franklin Institute, 2012-05, Vol.349 (4), p.1509-1525</ispartof><rights>2011 The Franklin Institute</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-754fa04d91be93f681ffcf8a0d53315e6df8af0a142f089757a1fe23b39a8093</citedby><cites>FETCH-LOGICAL-c348t-754fa04d91be93f681ffcf8a0d53315e6df8af0a142f089757a1fe23b39a8093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016003211001116$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3551,27905,27906,45984</link.rule.ids></links><search><creatorcontrib>Al-Hosani, Khalifa</creatorcontrib><creatorcontrib>Utkin, Vadim I.</creatorcontrib><title>Parameters estimation using sliding mode observer with shift operator</title><title>Journal of the Franklin Institute</title><description>In different areas of engineering, mathematical models are used to describe real life phenomena and experiments are conducted to validate them. It is common that these models may contain a number of parameters that cannot be measured directly or calculated. Thus, parameter estimation is an important step in the process of modeling based on empirical data of the system. In the control system’s literature, one can find considerable amount of research in the area of system parameters identification. Most of these techniques are based on minimizing the estimation error in some statistical framework such as least square error based methods. In most cases, using these techniques, one can prove the uniform exponential stability of the state and parameter estimation error, but the convergence rate can be too low. However, when designing control systems, knowledge of unknown immeasurable (or even time varying) parameters might be crucial for the operation of the controller and thus have to be accurately estimated with a desired rate of convergence. In this paper, we demonstrate a way to provide an estimation technique with tunable convergence rate using sliding mode with linear operators such as time delay.</description><subject>Control systems</subject><subject>Convergence</subject><subject>Errors</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Sliding mode</subject><issn>0016-0032</issn><issn>1879-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKu_wSzdzHiTzHNZSn2AoIvuQzq5sRlnJjVJK_57UypuXV0OfOdwzyHklkHOgFX3fd4br6aPwU45B8ZyKHMAfkZmrKnbjFetOCczSGgGIPgluQqhT7JmADOyelNejRjRB4oh2lFF6ya6D3Z6p2Gw-nhHp5G6TUB_QE-_bNzSsLUmUrdDr6Lz1-TCqCHgze-dk_XDar18yl5eH5-Xi5esE0UTs7osjIJCt2yDrTBVw4zpTKNAl0KwEiudhAHFCm6gaeuyVswgFxvRqgZaMSd3p9idd5_79K4cbehwGNSEbh8kA8EEcMFFQusT2nkXgkcjdz6V898JksfdZC__dpPH3SSUMu2WnIuTE1ORg0UvQ2dx6lBbj12U2tl_M34AD-d7vQ</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Al-Hosani, Khalifa</creator><creator>Utkin, Vadim I.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201205</creationdate><title>Parameters estimation using sliding mode observer with shift operator</title><author>Al-Hosani, Khalifa ; Utkin, Vadim I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-754fa04d91be93f681ffcf8a0d53315e6df8af0a142f089757a1fe23b39a8093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Control systems</topic><topic>Convergence</topic><topic>Errors</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Sliding mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Hosani, Khalifa</creatorcontrib><creatorcontrib>Utkin, Vadim I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Hosani, Khalifa</au><au>Utkin, Vadim I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameters estimation using sliding mode observer with shift operator</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2012-05</date><risdate>2012</risdate><volume>349</volume><issue>4</issue><spage>1509</spage><epage>1525</epage><pages>1509-1525</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><abstract>In different areas of engineering, mathematical models are used to describe real life phenomena and experiments are conducted to validate them. It is common that these models may contain a number of parameters that cannot be measured directly or calculated. Thus, parameter estimation is an important step in the process of modeling based on empirical data of the system. In the control system’s literature, one can find considerable amount of research in the area of system parameters identification. Most of these techniques are based on minimizing the estimation error in some statistical framework such as least square error based methods. In most cases, using these techniques, one can prove the uniform exponential stability of the state and parameter estimation error, but the convergence rate can be too low. However, when designing control systems, knowledge of unknown immeasurable (or even time varying) parameters might be crucial for the operation of the controller and thus have to be accurately estimated with a desired rate of convergence. In this paper, we demonstrate a way to provide an estimation technique with tunable convergence rate using sliding mode with linear operators such as time delay.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2011.05.002</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2012-05, Vol.349 (4), p.1509-1525
issn 0016-0032
1879-2693
language eng
recordid cdi_proquest_miscellaneous_1031302323
source Elsevier; Backfile Package - Mathematics (Legacy) [YMT]
subjects Control systems
Convergence
Errors
Least squares method
Mathematical models
Parameter estimation
Parameter identification
Sliding mode
title Parameters estimation using sliding mode observer with shift operator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A48%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameters%20estimation%20using%20sliding%20mode%20observer%20with%20shift%20operator&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Al-Hosani,%20Khalifa&rft.date=2012-05&rft.volume=349&rft.issue=4&rft.spage=1509&rft.epage=1525&rft.pages=1509-1525&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2011.05.002&rft_dat=%3Cproquest_cross%3E1031302323%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-754fa04d91be93f681ffcf8a0d53315e6df8af0a142f089757a1fe23b39a8093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1031302323&rft_id=info:pmid/&rfr_iscdi=true