Loading…

Efficient nanocoax-based solar cells

The power conversion efficiency of most thin film solar cells is compromised by competing optical and electronic constraints, wherein a cell must be thick enough to collect light yet thin enough to efficiently extract current. Here, we introduce a nanoscale solar architecture inspired by a well‐know...

Full description

Saved in:
Bibliographic Details
Published in:Physica status solidi. PSS-RRL. Rapid research letters 2010-07, Vol.4 (7), p.181-183
Main Authors: Naughton, M. J., Kempa, K., Ren, Z. F., Gao, Y., Rybczynski, J., Argenti, N., Gao, W., Wang, Y., Peng, Y., Naughton, J. R., McMahon, G., Paudel, T., Lan, Y. C., Burns, M. J., Shepard, A., Clary, M., Ballif, C., Haug, F.-J., Söderström, T., Cubero, O., Eminian, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4964-a1d3cc83d36e2b8f1075ea87c9fe166f97fcd38d09ebd4acac0fbb35f87de40a3
cites cdi_FETCH-LOGICAL-c4964-a1d3cc83d36e2b8f1075ea87c9fe166f97fcd38d09ebd4acac0fbb35f87de40a3
container_end_page 183
container_issue 7
container_start_page 181
container_title Physica status solidi. PSS-RRL. Rapid research letters
container_volume 4
creator Naughton, M. J.
Kempa, K.
Ren, Z. F.
Gao, Y.
Rybczynski, J.
Argenti, N.
Gao, W.
Wang, Y.
Peng, Y.
Naughton, J. R.
McMahon, G.
Paudel, T.
Lan, Y. C.
Burns, M. J.
Shepard, A.
Clary, M.
Ballif, C.
Haug, F.-J.
Söderström, T.
Cubero, O.
Eminian, C.
description The power conversion efficiency of most thin film solar cells is compromised by competing optical and electronic constraints, wherein a cell must be thick enough to collect light yet thin enough to efficiently extract current. Here, we introduce a nanoscale solar architecture inspired by a well‐known radio technology concept, the coaxial cable, that naturally resolves this “thick–thin” conundrum. Optically thick and elec‐ tronically thin amorphous silicon “nanocoax” cells are in the range of 8% efficiency, higher than any nanostructured thin film solar cell to date. Moreover, the thin nature of the cells reduces the Staebler–Wronski light‐induced degradation effect, a major problem with conventional solar cells of this type. This nanocoax represents a new platform for low cost, high efficiency solar power. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) In this Letter, the authors introduce a nanoscale solar architecture inspired by a well‐known radio technology concept, the coaxial cable. The electron microscope image shows an array of nanocoax solar cells that forms the basis of an optically thick, electronically thin, high efficiency solar photovoltaic technology. Spaced 900 nm apart, these nanocoaxes are fabricated from metallized nanopillars coated with amorphous silicon radial p–i–n junctions and indium tin oxide.
doi_str_mv 10.1002/pssr.201004154
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031303209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031303209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4964-a1d3cc83d36e2b8f1075ea87c9fe166f97fcd38d09ebd4acac0fbb35f87de40a3</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqWwMncAiSXFzjl2MkJVCqgqqC0wWhfHlgJpUuxUtP-eVKkiNqZ7w_fe3T1CLhkdMkrD27X3bhjSRnMW8SPSY7EIAxFKetzpiJ-SM-8_KY0SyaFHrsbW5jo3ZT0osax0hdsgRW-yga8KdANtisKfkxOLhTcXh9knbw_j5egxmL5MnkZ300DzRPAAWQZax5CBMGEaW0ZlZDCWOrGGCWETaXUGcUYTk2YcNWpq0xQiG8vMcIrQJzdt7tpV3xvja7XK_f4CLE218YpRYEAhpEmDDltUu6r521i1dvkK3a6B1L4Ota9DdXU0hutDNnqNhXVY6tx3rrDJBYhFwyUt95MXZvdPqnpdLOZ_dwStN_e12XZedF9KSJCR-phN1OJ5Ce9wP1Nz-AWc6oBN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031303209</pqid></control><display><type>article</type><title>Efficient nanocoax-based solar cells</title><source>Wiley</source><creator>Naughton, M. J. ; Kempa, K. ; Ren, Z. F. ; Gao, Y. ; Rybczynski, J. ; Argenti, N. ; Gao, W. ; Wang, Y. ; Peng, Y. ; Naughton, J. R. ; McMahon, G. ; Paudel, T. ; Lan, Y. C. ; Burns, M. J. ; Shepard, A. ; Clary, M. ; Ballif, C. ; Haug, F.-J. ; Söderström, T. ; Cubero, O. ; Eminian, C.</creator><creatorcontrib>Naughton, M. J. ; Kempa, K. ; Ren, Z. F. ; Gao, Y. ; Rybczynski, J. ; Argenti, N. ; Gao, W. ; Wang, Y. ; Peng, Y. ; Naughton, J. R. ; McMahon, G. ; Paudel, T. ; Lan, Y. C. ; Burns, M. J. ; Shepard, A. ; Clary, M. ; Ballif, C. ; Haug, F.-J. ; Söderström, T. ; Cubero, O. ; Eminian, C.</creatorcontrib><description>The power conversion efficiency of most thin film solar cells is compromised by competing optical and electronic constraints, wherein a cell must be thick enough to collect light yet thin enough to efficiently extract current. Here, we introduce a nanoscale solar architecture inspired by a well‐known radio technology concept, the coaxial cable, that naturally resolves this “thick–thin” conundrum. Optically thick and elec‐ tronically thin amorphous silicon “nanocoax” cells are in the range of 8% efficiency, higher than any nanostructured thin film solar cell to date. Moreover, the thin nature of the cells reduces the Staebler–Wronski light‐induced degradation effect, a major problem with conventional solar cells of this type. This nanocoax represents a new platform for low cost, high efficiency solar power. (© 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim) In this Letter, the authors introduce a nanoscale solar architecture inspired by a well‐known radio technology concept, the coaxial cable. The electron microscope image shows an array of nanocoax solar cells that forms the basis of an optically thick, electronically thin, high efficiency solar photovoltaic technology. Spaced 900 nm apart, these nanocoaxes are fabricated from metallized nanopillars coated with amorphous silicon radial p–i–n junctions and indium tin oxide.</description><identifier>ISSN: 1862-6254</identifier><identifier>ISSN: 1862-6270</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.201004154</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Applied sciences ; Conversion ; Energy ; Exact sciences and technology ; nanocoax ; Nanocomposites ; Nanomaterials ; nanoscale ; Nanostructure ; Natural energy ; Photovoltaic cells ; Photovoltaic conversion ; photovoltaics ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; Solar power generation ; Thin films</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2010-07, Vol.4 (7), p.181-183</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4964-a1d3cc83d36e2b8f1075ea87c9fe166f97fcd38d09ebd4acac0fbb35f87de40a3</citedby><cites>FETCH-LOGICAL-c4964-a1d3cc83d36e2b8f1075ea87c9fe166f97fcd38d09ebd4acac0fbb35f87de40a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23033386$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Naughton, M. J.</creatorcontrib><creatorcontrib>Kempa, K.</creatorcontrib><creatorcontrib>Ren, Z. F.</creatorcontrib><creatorcontrib>Gao, Y.</creatorcontrib><creatorcontrib>Rybczynski, J.</creatorcontrib><creatorcontrib>Argenti, N.</creatorcontrib><creatorcontrib>Gao, W.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Peng, Y.</creatorcontrib><creatorcontrib>Naughton, J. R.</creatorcontrib><creatorcontrib>McMahon, G.</creatorcontrib><creatorcontrib>Paudel, T.</creatorcontrib><creatorcontrib>Lan, Y. C.</creatorcontrib><creatorcontrib>Burns, M. J.</creatorcontrib><creatorcontrib>Shepard, A.</creatorcontrib><creatorcontrib>Clary, M.</creatorcontrib><creatorcontrib>Ballif, C.</creatorcontrib><creatorcontrib>Haug, F.-J.</creatorcontrib><creatorcontrib>Söderström, T.</creatorcontrib><creatorcontrib>Cubero, O.</creatorcontrib><creatorcontrib>Eminian, C.</creatorcontrib><title>Efficient nanocoax-based solar cells</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><addtitle>phys. stat. sol. (RRL)</addtitle><description>The power conversion efficiency of most thin film solar cells is compromised by competing optical and electronic constraints, wherein a cell must be thick enough to collect light yet thin enough to efficiently extract current. Here, we introduce a nanoscale solar architecture inspired by a well‐known radio technology concept, the coaxial cable, that naturally resolves this “thick–thin” conundrum. Optically thick and elec‐ tronically thin amorphous silicon “nanocoax” cells are in the range of 8% efficiency, higher than any nanostructured thin film solar cell to date. Moreover, the thin nature of the cells reduces the Staebler–Wronski light‐induced degradation effect, a major problem with conventional solar cells of this type. This nanocoax represents a new platform for low cost, high efficiency solar power. (© 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim) In this Letter, the authors introduce a nanoscale solar architecture inspired by a well‐known radio technology concept, the coaxial cable. The electron microscope image shows an array of nanocoax solar cells that forms the basis of an optically thick, electronically thin, high efficiency solar photovoltaic technology. Spaced 900 nm apart, these nanocoaxes are fabricated from metallized nanopillars coated with amorphous silicon radial p–i–n junctions and indium tin oxide.</description><subject>Applied sciences</subject><subject>Conversion</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>nanocoax</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>nanoscale</subject><subject>Nanostructure</subject><subject>Natural energy</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>photovoltaics</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>Solar power generation</subject><subject>Thin films</subject><issn>1862-6254</issn><issn>1862-6270</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqWwMncAiSXFzjl2MkJVCqgqqC0wWhfHlgJpUuxUtP-eVKkiNqZ7w_fe3T1CLhkdMkrD27X3bhjSRnMW8SPSY7EIAxFKetzpiJ-SM-8_KY0SyaFHrsbW5jo3ZT0osax0hdsgRW-yga8KdANtisKfkxOLhTcXh9knbw_j5egxmL5MnkZ300DzRPAAWQZax5CBMGEaW0ZlZDCWOrGGCWETaXUGcUYTk2YcNWpq0xQiG8vMcIrQJzdt7tpV3xvja7XK_f4CLE218YpRYEAhpEmDDltUu6r521i1dvkK3a6B1L4Ota9DdXU0hutDNnqNhXVY6tx3rrDJBYhFwyUt95MXZvdPqnpdLOZ_dwStN_e12XZedF9KSJCR-phN1OJ5Ce9wP1Nz-AWc6oBN</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Naughton, M. J.</creator><creator>Kempa, K.</creator><creator>Ren, Z. F.</creator><creator>Gao, Y.</creator><creator>Rybczynski, J.</creator><creator>Argenti, N.</creator><creator>Gao, W.</creator><creator>Wang, Y.</creator><creator>Peng, Y.</creator><creator>Naughton, J. R.</creator><creator>McMahon, G.</creator><creator>Paudel, T.</creator><creator>Lan, Y. C.</creator><creator>Burns, M. J.</creator><creator>Shepard, A.</creator><creator>Clary, M.</creator><creator>Ballif, C.</creator><creator>Haug, F.-J.</creator><creator>Söderström, T.</creator><creator>Cubero, O.</creator><creator>Eminian, C.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201007</creationdate><title>Efficient nanocoax-based solar cells</title><author>Naughton, M. J. ; Kempa, K. ; Ren, Z. F. ; Gao, Y. ; Rybczynski, J. ; Argenti, N. ; Gao, W. ; Wang, Y. ; Peng, Y. ; Naughton, J. R. ; McMahon, G. ; Paudel, T. ; Lan, Y. C. ; Burns, M. J. ; Shepard, A. ; Clary, M. ; Ballif, C. ; Haug, F.-J. ; Söderström, T. ; Cubero, O. ; Eminian, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4964-a1d3cc83d36e2b8f1075ea87c9fe166f97fcd38d09ebd4acac0fbb35f87de40a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Conversion</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>nanocoax</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>nanoscale</topic><topic>Nanostructure</topic><topic>Natural energy</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>photovoltaics</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>Solar power generation</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naughton, M. J.</creatorcontrib><creatorcontrib>Kempa, K.</creatorcontrib><creatorcontrib>Ren, Z. F.</creatorcontrib><creatorcontrib>Gao, Y.</creatorcontrib><creatorcontrib>Rybczynski, J.</creatorcontrib><creatorcontrib>Argenti, N.</creatorcontrib><creatorcontrib>Gao, W.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Peng, Y.</creatorcontrib><creatorcontrib>Naughton, J. R.</creatorcontrib><creatorcontrib>McMahon, G.</creatorcontrib><creatorcontrib>Paudel, T.</creatorcontrib><creatorcontrib>Lan, Y. C.</creatorcontrib><creatorcontrib>Burns, M. J.</creatorcontrib><creatorcontrib>Shepard, A.</creatorcontrib><creatorcontrib>Clary, M.</creatorcontrib><creatorcontrib>Ballif, C.</creatorcontrib><creatorcontrib>Haug, F.-J.</creatorcontrib><creatorcontrib>Söderström, T.</creatorcontrib><creatorcontrib>Cubero, O.</creatorcontrib><creatorcontrib>Eminian, C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naughton, M. J.</au><au>Kempa, K.</au><au>Ren, Z. F.</au><au>Gao, Y.</au><au>Rybczynski, J.</au><au>Argenti, N.</au><au>Gao, W.</au><au>Wang, Y.</au><au>Peng, Y.</au><au>Naughton, J. R.</au><au>McMahon, G.</au><au>Paudel, T.</au><au>Lan, Y. C.</au><au>Burns, M. J.</au><au>Shepard, A.</au><au>Clary, M.</au><au>Ballif, C.</au><au>Haug, F.-J.</au><au>Söderström, T.</au><au>Cubero, O.</au><au>Eminian, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient nanocoax-based solar cells</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><addtitle>phys. stat. sol. (RRL)</addtitle><date>2010-07</date><risdate>2010</risdate><volume>4</volume><issue>7</issue><spage>181</spage><epage>183</epage><pages>181-183</pages><issn>1862-6254</issn><issn>1862-6270</issn><eissn>1862-6270</eissn><abstract>The power conversion efficiency of most thin film solar cells is compromised by competing optical and electronic constraints, wherein a cell must be thick enough to collect light yet thin enough to efficiently extract current. Here, we introduce a nanoscale solar architecture inspired by a well‐known radio technology concept, the coaxial cable, that naturally resolves this “thick–thin” conundrum. Optically thick and elec‐ tronically thin amorphous silicon “nanocoax” cells are in the range of 8% efficiency, higher than any nanostructured thin film solar cell to date. Moreover, the thin nature of the cells reduces the Staebler–Wronski light‐induced degradation effect, a major problem with conventional solar cells of this type. This nanocoax represents a new platform for low cost, high efficiency solar power. (© 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim) In this Letter, the authors introduce a nanoscale solar architecture inspired by a well‐known radio technology concept, the coaxial cable. The electron microscope image shows an array of nanocoax solar cells that forms the basis of an optically thick, electronically thin, high efficiency solar photovoltaic technology. Spaced 900 nm apart, these nanocoaxes are fabricated from metallized nanopillars coated with amorphous silicon radial p–i–n junctions and indium tin oxide.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssr.201004154</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6254
ispartof Physica status solidi. PSS-RRL. Rapid research letters, 2010-07, Vol.4 (7), p.181-183
issn 1862-6254
1862-6270
1862-6270
language eng
recordid cdi_proquest_miscellaneous_1031303209
source Wiley
subjects Applied sciences
Conversion
Energy
Exact sciences and technology
nanocoax
Nanocomposites
Nanomaterials
nanoscale
Nanostructure
Natural energy
Photovoltaic cells
Photovoltaic conversion
photovoltaics
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
Solar power generation
Thin films
title Efficient nanocoax-based solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20nanocoax-based%20solar%20cells&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Naughton,%20M.%20J.&rft.date=2010-07&rft.volume=4&rft.issue=7&rft.spage=181&rft.epage=183&rft.pages=181-183&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.201004154&rft_dat=%3Cproquest_cross%3E1031303209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4964-a1d3cc83d36e2b8f1075ea87c9fe166f97fcd38d09ebd4acac0fbb35f87de40a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1031303209&rft_id=info:pmid/&rfr_iscdi=true