Loading…

Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides

A natural superlattice with composition (SnS) 1.2 (TiS 2 ) 2 , built by intercalating a SnS layer into the van der Waals gap of layered TiS 2 , has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2011-05, Vol.40 (5), p.1271-1280
Main Authors: Wan, Chunlei, Wang, Yifeng, Wang, Ning, Norimatsu, Wataru, Kusunoki, Michiko, Koumoto, Kunihito
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13
cites cdi_FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13
container_end_page 1280
container_issue 5
container_start_page 1271
container_title Journal of electronic materials
container_volume 40
creator Wan, Chunlei
Wang, Yifeng
Wang, Ning
Norimatsu, Wataru
Kusunoki, Michiko
Koumoto, Kunihito
description A natural superlattice with composition (SnS) 1.2 (TiS 2 ) 2 , built by intercalating a SnS layer into the van der Waals gap of layered TiS 2 , has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel to the layers because the electron mobility is maintained while simultaneously suppressing phonon transport, which is attributed to softening of the transverse sound velocities due to weakened interlayer bonding. In the direction perpendicular to the layers, the lattice thermal conductivity of (SnS) 1.2 (TiS 2 ) 2 is even lower than the predicted minimum thermal conductivity, which may be caused by phonon localization due to the translational disorder of the SnS layers parallel to the layers. Moreover, we propose a large family of misfit-layer compounds (MX) 1+ x (TX 2 ) n (M = Pb, Bi, Sn, Sb, rare-earth elements; T = Ti, V, Cr, Nb, Ta; X = S, Se; n  = 1, 2, 3) with a natural superlattice structure as possible candidate high-performance thermoelectric materials.
doi_str_mv 10.1007/s11664-011-1565-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031305499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031305499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13</originalsourceid><addsrcrecordid>eNp1kE2LFDEURYMo2I7-AHdBENyU817loyrunGbUgUYFR3AX0qmXngxVqTapWsy_N0MPCgOu3uKee3kcxl4jvEeA7rwgai0bQGxQadWoJ2yDSooGe_3rKduA0NioVqjn7EUptwCosMcNm67SQtm70S1xTh_4xRrHIaYDd_yrW9bsRv5jPVKu-RI98TBnfkFL7fDrG8rTTCP5JUfPv1Ou4eRSpWLiO3dHmQa-vXGjnw-U4kDlJXsW3Fjo1cM9Yz8_XV5vvzS7b5-vth93jZdSLs0esetIG6cltEh9gM7rnpQOgzYDdQaDqkTXowODAnFPAfywD-gNyD2KM_butHvM8--VymKnWDyNo0s0r8UiCBSgpDEVffMIvZ3XnOp3ttdagOwNVAhPkM9zKZmCPeY4uXxXl-y9f3vyb6t_e-_fqtp5-zDsSvUbcjUTy99iK4UR0LaVa09cqVE6UP73wP_H_wA5BZVH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866304890</pqid></control><display><type>article</type><title>Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides</title><source>Springer Nature</source><creator>Wan, Chunlei ; Wang, Yifeng ; Wang, Ning ; Norimatsu, Wataru ; Kusunoki, Michiko ; Koumoto, Kunihito</creator><creatorcontrib>Wan, Chunlei ; Wang, Yifeng ; Wang, Ning ; Norimatsu, Wataru ; Kusunoki, Michiko ; Koumoto, Kunihito</creatorcontrib><description>A natural superlattice with composition (SnS) 1.2 (TiS 2 ) 2 , built by intercalating a SnS layer into the van der Waals gap of layered TiS 2 , has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel to the layers because the electron mobility is maintained while simultaneously suppressing phonon transport, which is attributed to softening of the transverse sound velocities due to weakened interlayer bonding. In the direction perpendicular to the layers, the lattice thermal conductivity of (SnS) 1.2 (TiS 2 ) 2 is even lower than the predicted minimum thermal conductivity, which may be caused by phonon localization due to the translational disorder of the SnS layers parallel to the layers. Moreover, we propose a large family of misfit-layer compounds (MX) 1+ x (TX 2 ) n (M = Pb, Bi, Sn, Sb, rare-earth elements; T = Ti, V, Cr, Nb, Ta; X = S, Se; n  = 1, 2, 3) with a natural superlattice structure as possible candidate high-performance thermoelectric materials.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-011-1565-5</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conductivity phenomena in semiconductors and insulators ; Electronic transport in condensed matter ; Electronics and Microelectronics ; Exact sciences and technology ; Heat conductivity ; Heat transfer ; Incommensaturate crystals ; Instrumentation ; Materials Science ; Nature ; Optical and Electronic Materials ; Phonons ; Physics ; Rare earth metals ; Science ; Semi-periodic solids ; Softening ; Solid State Physics ; Structure of solids and liquids; crystallography ; Superlattices ; Thermal conductivity ; Thermoelectric and thermomagnetic effects ; Thermoelectricity ; Transmission electron microscopy</subject><ispartof>Journal of electronic materials, 2011-05, Vol.40 (5), p.1271-1280</ispartof><rights>TMS 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science &amp; Business Media May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13</citedby><cites>FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24393022$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Chunlei</creatorcontrib><creatorcontrib>Wang, Yifeng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Norimatsu, Wataru</creatorcontrib><creatorcontrib>Kusunoki, Michiko</creatorcontrib><creatorcontrib>Koumoto, Kunihito</creatorcontrib><title>Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>A natural superlattice with composition (SnS) 1.2 (TiS 2 ) 2 , built by intercalating a SnS layer into the van der Waals gap of layered TiS 2 , has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel to the layers because the electron mobility is maintained while simultaneously suppressing phonon transport, which is attributed to softening of the transverse sound velocities due to weakened interlayer bonding. In the direction perpendicular to the layers, the lattice thermal conductivity of (SnS) 1.2 (TiS 2 ) 2 is even lower than the predicted minimum thermal conductivity, which may be caused by phonon localization due to the translational disorder of the SnS layers parallel to the layers. Moreover, we propose a large family of misfit-layer compounds (MX) 1+ x (TX 2 ) n (M = Pb, Bi, Sn, Sb, rare-earth elements; T = Ti, V, Cr, Nb, Ta; X = S, Se; n  = 1, 2, 3) with a natural superlattice structure as possible candidate high-performance thermoelectric materials.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conductivity phenomena in semiconductors and insulators</subject><subject>Electronic transport in condensed matter</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Incommensaturate crystals</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Nature</subject><subject>Optical and Electronic Materials</subject><subject>Phonons</subject><subject>Physics</subject><subject>Rare earth metals</subject><subject>Science</subject><subject>Semi-periodic solids</subject><subject>Softening</subject><subject>Solid State Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Superlattices</subject><subject>Thermal conductivity</subject><subject>Thermoelectric and thermomagnetic effects</subject><subject>Thermoelectricity</subject><subject>Transmission electron microscopy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE2LFDEURYMo2I7-AHdBENyU817loyrunGbUgUYFR3AX0qmXngxVqTapWsy_N0MPCgOu3uKee3kcxl4jvEeA7rwgai0bQGxQadWoJ2yDSooGe_3rKduA0NioVqjn7EUptwCosMcNm67SQtm70S1xTh_4xRrHIaYDd_yrW9bsRv5jPVKu-RI98TBnfkFL7fDrG8rTTCP5JUfPv1Ou4eRSpWLiO3dHmQa-vXGjnw-U4kDlJXsW3Fjo1cM9Yz8_XV5vvzS7b5-vth93jZdSLs0esetIG6cltEh9gM7rnpQOgzYDdQaDqkTXowODAnFPAfywD-gNyD2KM_butHvM8--VymKnWDyNo0s0r8UiCBSgpDEVffMIvZ3XnOp3ttdagOwNVAhPkM9zKZmCPeY4uXxXl-y9f3vyb6t_e-_fqtp5-zDsSvUbcjUTy99iK4UR0LaVa09cqVE6UP73wP_H_wA5BZVH</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Wan, Chunlei</creator><creator>Wang, Yifeng</creator><creator>Wang, Ning</creator><creator>Norimatsu, Wataru</creator><creator>Kusunoki, Michiko</creator><creator>Koumoto, Kunihito</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides</title><author>Wan, Chunlei ; Wang, Yifeng ; Wang, Ning ; Norimatsu, Wataru ; Kusunoki, Michiko ; Koumoto, Kunihito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conductivity phenomena in semiconductors and insulators</topic><topic>Electronic transport in condensed matter</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Incommensaturate crystals</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Nature</topic><topic>Optical and Electronic Materials</topic><topic>Phonons</topic><topic>Physics</topic><topic>Rare earth metals</topic><topic>Science</topic><topic>Semi-periodic solids</topic><topic>Softening</topic><topic>Solid State Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Superlattices</topic><topic>Thermal conductivity</topic><topic>Thermoelectric and thermomagnetic effects</topic><topic>Thermoelectricity</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Chunlei</creatorcontrib><creatorcontrib>Wang, Yifeng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Norimatsu, Wataru</creatorcontrib><creatorcontrib>Kusunoki, Michiko</creatorcontrib><creatorcontrib>Koumoto, Kunihito</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Chunlei</au><au>Wang, Yifeng</au><au>Wang, Ning</au><au>Norimatsu, Wataru</au><au>Kusunoki, Michiko</au><au>Koumoto, Kunihito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>40</volume><issue>5</issue><spage>1271</spage><epage>1280</epage><pages>1271-1280</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>A natural superlattice with composition (SnS) 1.2 (TiS 2 ) 2 , built by intercalating a SnS layer into the van der Waals gap of layered TiS 2 , has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel to the layers because the electron mobility is maintained while simultaneously suppressing phonon transport, which is attributed to softening of the transverse sound velocities due to weakened interlayer bonding. In the direction perpendicular to the layers, the lattice thermal conductivity of (SnS) 1.2 (TiS 2 ) 2 is even lower than the predicted minimum thermal conductivity, which may be caused by phonon localization due to the translational disorder of the SnS layers parallel to the layers. Moreover, we propose a large family of misfit-layer compounds (MX) 1+ x (TX 2 ) n (M = Pb, Bi, Sn, Sb, rare-earth elements; T = Ti, V, Cr, Nb, Ta; X = S, Se; n  = 1, 2, 3) with a natural superlattice structure as possible candidate high-performance thermoelectric materials.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-011-1565-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2011-05, Vol.40 (5), p.1271-1280
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_1031305499
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromium
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Conductivity phenomena in semiconductors and insulators
Electronic transport in condensed matter
Electronics and Microelectronics
Exact sciences and technology
Heat conductivity
Heat transfer
Incommensaturate crystals
Instrumentation
Materials Science
Nature
Optical and Electronic Materials
Phonons
Physics
Rare earth metals
Science
Semi-periodic solids
Softening
Solid State Physics
Structure of solids and liquids
crystallography
Superlattices
Thermal conductivity
Thermoelectric and thermomagnetic effects
Thermoelectricity
Transmission electron microscopy
title Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intercalation:%20Building%20a%20Natural%20Superlattice%20for%20Better%20Thermoelectric%20Performance%20in%20Layered%20Chalcogenides&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Wan,%20Chunlei&rft.date=2011-05-01&rft.volume=40&rft.issue=5&rft.spage=1271&rft.epage=1280&rft.pages=1271-1280&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-011-1565-5&rft_dat=%3Cproquest_cross%3E1031305499%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866304890&rft_id=info:pmid/&rfr_iscdi=true