Loading…
Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides
A natural superlattice with composition (SnS) 1.2 (TiS 2 ) 2 , built by intercalating a SnS layer into the van der Waals gap of layered TiS 2 , has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel...
Saved in:
Published in: | Journal of electronic materials 2011-05, Vol.40 (5), p.1271-1280 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13 |
container_end_page | 1280 |
container_issue | 5 |
container_start_page | 1271 |
container_title | Journal of electronic materials |
container_volume | 40 |
creator | Wan, Chunlei Wang, Yifeng Wang, Ning Norimatsu, Wataru Kusunoki, Michiko Koumoto, Kunihito |
description | A natural superlattice with composition (SnS)
1.2
(TiS
2
)
2
, built by intercalating a SnS layer into the van der Waals gap of layered TiS
2
, has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel to the layers because the electron mobility is maintained while simultaneously suppressing phonon transport, which is attributed to softening of the transverse sound velocities due to weakened interlayer bonding. In the direction perpendicular to the layers, the lattice thermal conductivity of (SnS)
1.2
(TiS
2
)
2
is even lower than the predicted minimum thermal conductivity, which may be caused by phonon localization due to the translational disorder of the SnS layers parallel to the layers. Moreover, we propose a large family of misfit-layer compounds (MX)
1+
x
(TX
2
)
n
(M = Pb, Bi, Sn, Sb, rare-earth elements; T = Ti, V, Cr, Nb, Ta; X = S, Se;
n
= 1, 2, 3) with a natural superlattice structure as possible candidate high-performance thermoelectric materials. |
doi_str_mv | 10.1007/s11664-011-1565-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031305499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031305499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13</originalsourceid><addsrcrecordid>eNp1kE2LFDEURYMo2I7-AHdBENyU817loyrunGbUgUYFR3AX0qmXngxVqTapWsy_N0MPCgOu3uKee3kcxl4jvEeA7rwgai0bQGxQadWoJ2yDSooGe_3rKduA0NioVqjn7EUptwCosMcNm67SQtm70S1xTh_4xRrHIaYDd_yrW9bsRv5jPVKu-RI98TBnfkFL7fDrG8rTTCP5JUfPv1Ou4eRSpWLiO3dHmQa-vXGjnw-U4kDlJXsW3Fjo1cM9Yz8_XV5vvzS7b5-vth93jZdSLs0esetIG6cltEh9gM7rnpQOgzYDdQaDqkTXowODAnFPAfywD-gNyD2KM_butHvM8--VymKnWDyNo0s0r8UiCBSgpDEVffMIvZ3XnOp3ttdagOwNVAhPkM9zKZmCPeY4uXxXl-y9f3vyb6t_e-_fqtp5-zDsSvUbcjUTy99iK4UR0LaVa09cqVE6UP73wP_H_wA5BZVH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866304890</pqid></control><display><type>article</type><title>Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides</title><source>Springer Nature</source><creator>Wan, Chunlei ; Wang, Yifeng ; Wang, Ning ; Norimatsu, Wataru ; Kusunoki, Michiko ; Koumoto, Kunihito</creator><creatorcontrib>Wan, Chunlei ; Wang, Yifeng ; Wang, Ning ; Norimatsu, Wataru ; Kusunoki, Michiko ; Koumoto, Kunihito</creatorcontrib><description>A natural superlattice with composition (SnS)
1.2
(TiS
2
)
2
, built by intercalating a SnS layer into the van der Waals gap of layered TiS
2
, has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel to the layers because the electron mobility is maintained while simultaneously suppressing phonon transport, which is attributed to softening of the transverse sound velocities due to weakened interlayer bonding. In the direction perpendicular to the layers, the lattice thermal conductivity of (SnS)
1.2
(TiS
2
)
2
is even lower than the predicted minimum thermal conductivity, which may be caused by phonon localization due to the translational disorder of the SnS layers parallel to the layers. Moreover, we propose a large family of misfit-layer compounds (MX)
1+
x
(TX
2
)
n
(M = Pb, Bi, Sn, Sb, rare-earth elements; T = Ti, V, Cr, Nb, Ta; X = S, Se;
n
= 1, 2, 3) with a natural superlattice structure as possible candidate high-performance thermoelectric materials.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-011-1565-5</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conductivity phenomena in semiconductors and insulators ; Electronic transport in condensed matter ; Electronics and Microelectronics ; Exact sciences and technology ; Heat conductivity ; Heat transfer ; Incommensaturate crystals ; Instrumentation ; Materials Science ; Nature ; Optical and Electronic Materials ; Phonons ; Physics ; Rare earth metals ; Science ; Semi-periodic solids ; Softening ; Solid State Physics ; Structure of solids and liquids; crystallography ; Superlattices ; Thermal conductivity ; Thermoelectric and thermomagnetic effects ; Thermoelectricity ; Transmission electron microscopy</subject><ispartof>Journal of electronic materials, 2011-05, Vol.40 (5), p.1271-1280</ispartof><rights>TMS 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science & Business Media May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13</citedby><cites>FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24393022$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Chunlei</creatorcontrib><creatorcontrib>Wang, Yifeng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Norimatsu, Wataru</creatorcontrib><creatorcontrib>Kusunoki, Michiko</creatorcontrib><creatorcontrib>Koumoto, Kunihito</creatorcontrib><title>Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>A natural superlattice with composition (SnS)
1.2
(TiS
2
)
2
, built by intercalating a SnS layer into the van der Waals gap of layered TiS
2
, has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel to the layers because the electron mobility is maintained while simultaneously suppressing phonon transport, which is attributed to softening of the transverse sound velocities due to weakened interlayer bonding. In the direction perpendicular to the layers, the lattice thermal conductivity of (SnS)
1.2
(TiS
2
)
2
is even lower than the predicted minimum thermal conductivity, which may be caused by phonon localization due to the translational disorder of the SnS layers parallel to the layers. Moreover, we propose a large family of misfit-layer compounds (MX)
1+
x
(TX
2
)
n
(M = Pb, Bi, Sn, Sb, rare-earth elements; T = Ti, V, Cr, Nb, Ta; X = S, Se;
n
= 1, 2, 3) with a natural superlattice structure as possible candidate high-performance thermoelectric materials.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conductivity phenomena in semiconductors and insulators</subject><subject>Electronic transport in condensed matter</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Incommensaturate crystals</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Nature</subject><subject>Optical and Electronic Materials</subject><subject>Phonons</subject><subject>Physics</subject><subject>Rare earth metals</subject><subject>Science</subject><subject>Semi-periodic solids</subject><subject>Softening</subject><subject>Solid State Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Superlattices</subject><subject>Thermal conductivity</subject><subject>Thermoelectric and thermomagnetic effects</subject><subject>Thermoelectricity</subject><subject>Transmission electron microscopy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE2LFDEURYMo2I7-AHdBENyU817loyrunGbUgUYFR3AX0qmXngxVqTapWsy_N0MPCgOu3uKee3kcxl4jvEeA7rwgai0bQGxQadWoJ2yDSooGe_3rKduA0NioVqjn7EUptwCosMcNm67SQtm70S1xTh_4xRrHIaYDd_yrW9bsRv5jPVKu-RI98TBnfkFL7fDrG8rTTCP5JUfPv1Ou4eRSpWLiO3dHmQa-vXGjnw-U4kDlJXsW3Fjo1cM9Yz8_XV5vvzS7b5-vth93jZdSLs0esetIG6cltEh9gM7rnpQOgzYDdQaDqkTXowODAnFPAfywD-gNyD2KM_butHvM8--VymKnWDyNo0s0r8UiCBSgpDEVffMIvZ3XnOp3ttdagOwNVAhPkM9zKZmCPeY4uXxXl-y9f3vyb6t_e-_fqtp5-zDsSvUbcjUTy99iK4UR0LaVa09cqVE6UP73wP_H_wA5BZVH</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Wan, Chunlei</creator><creator>Wang, Yifeng</creator><creator>Wang, Ning</creator><creator>Norimatsu, Wataru</creator><creator>Kusunoki, Michiko</creator><creator>Koumoto, Kunihito</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides</title><author>Wan, Chunlei ; Wang, Yifeng ; Wang, Ning ; Norimatsu, Wataru ; Kusunoki, Michiko ; Koumoto, Kunihito</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conductivity phenomena in semiconductors and insulators</topic><topic>Electronic transport in condensed matter</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Incommensaturate crystals</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Nature</topic><topic>Optical and Electronic Materials</topic><topic>Phonons</topic><topic>Physics</topic><topic>Rare earth metals</topic><topic>Science</topic><topic>Semi-periodic solids</topic><topic>Softening</topic><topic>Solid State Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Superlattices</topic><topic>Thermal conductivity</topic><topic>Thermoelectric and thermomagnetic effects</topic><topic>Thermoelectricity</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Chunlei</creatorcontrib><creatorcontrib>Wang, Yifeng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Norimatsu, Wataru</creatorcontrib><creatorcontrib>Kusunoki, Michiko</creatorcontrib><creatorcontrib>Koumoto, Kunihito</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Chunlei</au><au>Wang, Yifeng</au><au>Wang, Ning</au><au>Norimatsu, Wataru</au><au>Kusunoki, Michiko</au><au>Koumoto, Kunihito</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>40</volume><issue>5</issue><spage>1271</spage><epage>1280</epage><pages>1271-1280</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>A natural superlattice with composition (SnS)
1.2
(TiS
2
)
2
, built by intercalating a SnS layer into the van der Waals gap of layered TiS
2
, has been directly observed by high-resolution transmission electron microscopy (HRTEM). The thermoelectric performance is improved in the direction parallel to the layers because the electron mobility is maintained while simultaneously suppressing phonon transport, which is attributed to softening of the transverse sound velocities due to weakened interlayer bonding. In the direction perpendicular to the layers, the lattice thermal conductivity of (SnS)
1.2
(TiS
2
)
2
is even lower than the predicted minimum thermal conductivity, which may be caused by phonon localization due to the translational disorder of the SnS layers parallel to the layers. Moreover, we propose a large family of misfit-layer compounds (MX)
1+
x
(TX
2
)
n
(M = Pb, Bi, Sn, Sb, rare-earth elements; T = Ti, V, Cr, Nb, Ta; X = S, Se;
n
= 1, 2, 3) with a natural superlattice structure as possible candidate high-performance thermoelectric materials.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-011-1565-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2011-05, Vol.40 (5), p.1271-1280 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_1031305499 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Chromium Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Conductivity phenomena in semiconductors and insulators Electronic transport in condensed matter Electronics and Microelectronics Exact sciences and technology Heat conductivity Heat transfer Incommensaturate crystals Instrumentation Materials Science Nature Optical and Electronic Materials Phonons Physics Rare earth metals Science Semi-periodic solids Softening Solid State Physics Structure of solids and liquids crystallography Superlattices Thermal conductivity Thermoelectric and thermomagnetic effects Thermoelectricity Transmission electron microscopy |
title | Intercalation: Building a Natural Superlattice for Better Thermoelectric Performance in Layered Chalcogenides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intercalation:%20Building%20a%20Natural%20Superlattice%20for%20Better%20Thermoelectric%20Performance%20in%20Layered%20Chalcogenides&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Wan,%20Chunlei&rft.date=2011-05-01&rft.volume=40&rft.issue=5&rft.spage=1271&rft.epage=1280&rft.pages=1271-1280&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-011-1565-5&rft_dat=%3Cproquest_cross%3E1031305499%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-b1177e69a64021e8f07c68e56fd69de791f5177781a091311bef0cdbf1c904b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866304890&rft_id=info:pmid/&rfr_iscdi=true |