Loading…

Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering

Realistic microstructures of compacted powders formed by spark plasma sintering or field-activated sintering technology were modeled using the discrete finite-element method. Two key thermoelectric characteristics were studied: (1) the effect of the electric current pattern, i.e., direct current (DC...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2011-05, Vol.40 (5), p.873-878
Main Authors: Zhang, Jing, Zavaliangos, Antonios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3
cites cdi_FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3
container_end_page 878
container_issue 5
container_start_page 873
container_title Journal of electronic materials
container_volume 40
creator Zhang, Jing
Zavaliangos, Antonios
description Realistic microstructures of compacted powders formed by spark plasma sintering or field-activated sintering technology were modeled using the discrete finite-element method. Two key thermoelectric characteristics were studied: (1) the effect of the electric current pattern, i.e., direct current (DC) and pulsed current, on temperature distributions in the compacted powders, and (2) the effect of compaction modes, i.e., isostatic compaction and uniaxial compaction, on conductivity. Simulations showed that, for the same electric power input, pulsed current offered faster heating and more uniform temperature distribution in the compact than did DC. Additionally, using uniaxial compaction, the effective conductivity of the compact in the compaction direction was higher than in the transverse direction, by as much as 20%. Experimental measurements confirmed the existence of anisotropy of conductivity in the compact.
doi_str_mv 10.1007/s11664-011-1606-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031308957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031308957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN0gCG6ieZNMZmYpWj9AsKCCu_CavrGpM5maTBf-e1MqCoKrtzn3ct9h7BjEOQhRXkQArRUXABy00FzssBEUSnKo9OsuGwmpgRe5LPbZQYxLIaCACkbs9dpFG2ig7MZ5NxCftNSRH7In161bHFzvs77JnhcUup5askNwNpsuyPcJw8z57GmF4T2bthg7TDE_UHD-7ZDtNdhGOvq-Y_ZyM3m-uuMPj7f3V5cP3MqyGrjSCFKSRiVmJKtZLVETiXlVayXLfFY3OGvmWtVFblHVlS7KeQ5WzRuEuixRjtnZtncV-o81xcF06SNqW_TUr6MBIUGKqi7KhJ78QZf9Ovi0zlRaS6ESkyDYQjb0MQZqzCq4DsNnajIb1War2iTVZqPaiJQ5_S7GaLFtAnrr4k8wV7LO0wOJy7dcXG0UUfgd8H_5FyVDjY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866304573</pqid></control><display><type>article</type><title>Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Zhang, Jing ; Zavaliangos, Antonios</creator><creatorcontrib>Zhang, Jing ; Zavaliangos, Antonios</creatorcontrib><description>Realistic microstructures of compacted powders formed by spark plasma sintering or field-activated sintering technology were modeled using the discrete finite-element method. Two key thermoelectric characteristics were studied: (1) the effect of the electric current pattern, i.e., direct current (DC) and pulsed current, on temperature distributions in the compacted powders, and (2) the effect of compaction modes, i.e., isostatic compaction and uniaxial compaction, on conductivity. Simulations showed that, for the same electric power input, pulsed current offered faster heating and more uniform temperature distribution in the compact than did DC. Additionally, using uniaxial compaction, the effective conductivity of the compact in the compaction direction was higher than in the transverse direction, by as much as 20%. Experimental measurements confirmed the existence of anisotropy of conductivity in the compact.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-011-1606-0</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Compacting ; Computer simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conductivity ; Conductivity phenomena in semiconductors and insulators ; Direct current ; Electronic transport in condensed matter ; Electronics and Microelectronics ; Exact sciences and technology ; Finite element analysis ; Instrumentation ; Materials Science ; Mathematical analysis ; Optical and Electronic Materials ; Physics ; Plasma sintering ; Pulsed current ; Solid State Physics ; Spark plasma sintering ; Studies ; Temperature distribution ; Thermoelectric and thermomagnetic effects ; Thermoelectricity</subject><ispartof>Journal of electronic materials, 2011-05, Vol.40 (5), p.873-878</ispartof><rights>TMS 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science &amp; Business Media May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3</citedby><cites>FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24392952$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Zavaliangos, Antonios</creatorcontrib><title>Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Realistic microstructures of compacted powders formed by spark plasma sintering or field-activated sintering technology were modeled using the discrete finite-element method. Two key thermoelectric characteristics were studied: (1) the effect of the electric current pattern, i.e., direct current (DC) and pulsed current, on temperature distributions in the compacted powders, and (2) the effect of compaction modes, i.e., isostatic compaction and uniaxial compaction, on conductivity. Simulations showed that, for the same electric power input, pulsed current offered faster heating and more uniform temperature distribution in the compact than did DC. Additionally, using uniaxial compaction, the effective conductivity of the compact in the compaction direction was higher than in the transverse direction, by as much as 20%. Experimental measurements confirmed the existence of anisotropy of conductivity in the compact.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Compacting</subject><subject>Computer simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conductivity</subject><subject>Conductivity phenomena in semiconductors and insulators</subject><subject>Direct current</subject><subject>Electronic transport in condensed matter</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Plasma sintering</subject><subject>Pulsed current</subject><subject>Solid State Physics</subject><subject>Spark plasma sintering</subject><subject>Studies</subject><subject>Temperature distribution</subject><subject>Thermoelectric and thermomagnetic effects</subject><subject>Thermoelectricity</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wN0gCG6ieZNMZmYpWj9AsKCCu_CavrGpM5maTBf-e1MqCoKrtzn3ct9h7BjEOQhRXkQArRUXABy00FzssBEUSnKo9OsuGwmpgRe5LPbZQYxLIaCACkbs9dpFG2ig7MZ5NxCftNSRH7In161bHFzvs77JnhcUup5askNwNpsuyPcJw8z57GmF4T2bthg7TDE_UHD-7ZDtNdhGOvq-Y_ZyM3m-uuMPj7f3V5cP3MqyGrjSCFKSRiVmJKtZLVETiXlVayXLfFY3OGvmWtVFblHVlS7KeQ5WzRuEuixRjtnZtncV-o81xcF06SNqW_TUr6MBIUGKqi7KhJ78QZf9Ovi0zlRaS6ESkyDYQjb0MQZqzCq4DsNnajIb1War2iTVZqPaiJQ5_S7GaLFtAnrr4k8wV7LO0wOJy7dcXG0UUfgd8H_5FyVDjY8</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Zhang, Jing</creator><creator>Zavaliangos, Antonios</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering</title><author>Zhang, Jing ; Zavaliangos, Antonios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Compacting</topic><topic>Computer simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conductivity</topic><topic>Conductivity phenomena in semiconductors and insulators</topic><topic>Direct current</topic><topic>Electronic transport in condensed matter</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Plasma sintering</topic><topic>Pulsed current</topic><topic>Solid State Physics</topic><topic>Spark plasma sintering</topic><topic>Studies</topic><topic>Temperature distribution</topic><topic>Thermoelectric and thermomagnetic effects</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Zavaliangos, Antonios</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Zavaliangos, Antonios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>40</volume><issue>5</issue><spage>873</spage><epage>878</epage><pages>873-878</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Realistic microstructures of compacted powders formed by spark plasma sintering or field-activated sintering technology were modeled using the discrete finite-element method. Two key thermoelectric characteristics were studied: (1) the effect of the electric current pattern, i.e., direct current (DC) and pulsed current, on temperature distributions in the compacted powders, and (2) the effect of compaction modes, i.e., isostatic compaction and uniaxial compaction, on conductivity. Simulations showed that, for the same electric power input, pulsed current offered faster heating and more uniform temperature distribution in the compact than did DC. Additionally, using uniaxial compaction, the effective conductivity of the compact in the compaction direction was higher than in the transverse direction, by as much as 20%. Experimental measurements confirmed the existence of anisotropy of conductivity in the compact.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-011-1606-0</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2011-05, Vol.40 (5), p.873-878
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_1031308957
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Compacting
Computer simulation
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Conductivity
Conductivity phenomena in semiconductors and insulators
Direct current
Electronic transport in condensed matter
Electronics and Microelectronics
Exact sciences and technology
Finite element analysis
Instrumentation
Materials Science
Mathematical analysis
Optical and Electronic Materials
Physics
Plasma sintering
Pulsed current
Solid State Physics
Spark plasma sintering
Studies
Temperature distribution
Thermoelectric and thermomagnetic effects
Thermoelectricity
title Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Finite-Element%20Simulation%20of%20Thermoelectric%20Phenomena%20in%20Spark%20Plasma%20Sintering&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Zhang,%20Jing&rft.date=2011-05-01&rft.volume=40&rft.issue=5&rft.spage=873&rft.epage=878&rft.pages=873-878&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-011-1606-0&rft_dat=%3Cproquest_cross%3E1031308957%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866304573&rft_id=info:pmid/&rfr_iscdi=true