Loading…
Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering
Realistic microstructures of compacted powders formed by spark plasma sintering or field-activated sintering technology were modeled using the discrete finite-element method. Two key thermoelectric characteristics were studied: (1) the effect of the electric current pattern, i.e., direct current (DC...
Saved in:
Published in: | Journal of electronic materials 2011-05, Vol.40 (5), p.873-878 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3 |
container_end_page | 878 |
container_issue | 5 |
container_start_page | 873 |
container_title | Journal of electronic materials |
container_volume | 40 |
creator | Zhang, Jing Zavaliangos, Antonios |
description | Realistic microstructures of compacted powders formed by spark plasma sintering or field-activated sintering technology were modeled using the discrete finite-element method. Two key thermoelectric characteristics were studied: (1) the effect of the electric current pattern, i.e., direct current (DC) and pulsed current, on temperature distributions in the compacted powders, and (2) the effect of compaction modes, i.e., isostatic compaction and uniaxial compaction, on conductivity. Simulations showed that, for the same electric power input, pulsed current offered faster heating and more uniform temperature distribution in the compact than did DC. Additionally, using uniaxial compaction, the effective conductivity of the compact in the compaction direction was higher than in the transverse direction, by as much as 20%. Experimental measurements confirmed the existence of anisotropy of conductivity in the compact. |
doi_str_mv | 10.1007/s11664-011-1606-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031308957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1031308957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEURYMoWKs_wN0gCG6ieZNMZmYpWj9AsKCCu_CavrGpM5maTBf-e1MqCoKrtzn3ct9h7BjEOQhRXkQArRUXABy00FzssBEUSnKo9OsuGwmpgRe5LPbZQYxLIaCACkbs9dpFG2ig7MZ5NxCftNSRH7In161bHFzvs77JnhcUup5askNwNpsuyPcJw8z57GmF4T2bthg7TDE_UHD-7ZDtNdhGOvq-Y_ZyM3m-uuMPj7f3V5cP3MqyGrjSCFKSRiVmJKtZLVETiXlVayXLfFY3OGvmWtVFblHVlS7KeQ5WzRuEuixRjtnZtncV-o81xcF06SNqW_TUr6MBIUGKqi7KhJ78QZf9Ovi0zlRaS6ESkyDYQjb0MQZqzCq4DsNnajIb1War2iTVZqPaiJQ5_S7GaLFtAnrr4k8wV7LO0wOJy7dcXG0UUfgd8H_5FyVDjY8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>866304573</pqid></control><display><type>article</type><title>Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Zhang, Jing ; Zavaliangos, Antonios</creator><creatorcontrib>Zhang, Jing ; Zavaliangos, Antonios</creatorcontrib><description>Realistic microstructures of compacted powders formed by spark plasma sintering or field-activated sintering technology were modeled using the discrete finite-element method. Two key thermoelectric characteristics were studied: (1) the effect of the electric current pattern, i.e., direct current (DC) and pulsed current, on temperature distributions in the compacted powders, and (2) the effect of compaction modes, i.e., isostatic compaction and uniaxial compaction, on conductivity. Simulations showed that, for the same electric power input, pulsed current offered faster heating and more uniform temperature distribution in the compact than did DC. Additionally, using uniaxial compaction, the effective conductivity of the compact in the compaction direction was higher than in the transverse direction, by as much as 20%. Experimental measurements confirmed the existence of anisotropy of conductivity in the compact.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-011-1606-0</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Compacting ; Computer simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conductivity ; Conductivity phenomena in semiconductors and insulators ; Direct current ; Electronic transport in condensed matter ; Electronics and Microelectronics ; Exact sciences and technology ; Finite element analysis ; Instrumentation ; Materials Science ; Mathematical analysis ; Optical and Electronic Materials ; Physics ; Plasma sintering ; Pulsed current ; Solid State Physics ; Spark plasma sintering ; Studies ; Temperature distribution ; Thermoelectric and thermomagnetic effects ; Thermoelectricity</subject><ispartof>Journal of electronic materials, 2011-05, Vol.40 (5), p.873-878</ispartof><rights>TMS 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Springer Science & Business Media May 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3</citedby><cites>FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24392952$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Zavaliangos, Antonios</creatorcontrib><title>Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Realistic microstructures of compacted powders formed by spark plasma sintering or field-activated sintering technology were modeled using the discrete finite-element method. Two key thermoelectric characteristics were studied: (1) the effect of the electric current pattern, i.e., direct current (DC) and pulsed current, on temperature distributions in the compacted powders, and (2) the effect of compaction modes, i.e., isostatic compaction and uniaxial compaction, on conductivity. Simulations showed that, for the same electric power input, pulsed current offered faster heating and more uniform temperature distribution in the compact than did DC. Additionally, using uniaxial compaction, the effective conductivity of the compact in the compaction direction was higher than in the transverse direction, by as much as 20%. Experimental measurements confirmed the existence of anisotropy of conductivity in the compact.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Compacting</subject><subject>Computer simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conductivity</subject><subject>Conductivity phenomena in semiconductors and insulators</subject><subject>Direct current</subject><subject>Electronic transport in condensed matter</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Plasma sintering</subject><subject>Pulsed current</subject><subject>Solid State Physics</subject><subject>Spark plasma sintering</subject><subject>Studies</subject><subject>Temperature distribution</subject><subject>Thermoelectric and thermomagnetic effects</subject><subject>Thermoelectricity</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEURYMoWKs_wN0gCG6ieZNMZmYpWj9AsKCCu_CavrGpM5maTBf-e1MqCoKrtzn3ct9h7BjEOQhRXkQArRUXABy00FzssBEUSnKo9OsuGwmpgRe5LPbZQYxLIaCACkbs9dpFG2ig7MZ5NxCftNSRH7In161bHFzvs77JnhcUup5askNwNpsuyPcJw8z57GmF4T2bthg7TDE_UHD-7ZDtNdhGOvq-Y_ZyM3m-uuMPj7f3V5cP3MqyGrjSCFKSRiVmJKtZLVETiXlVayXLfFY3OGvmWtVFblHVlS7KeQ5WzRuEuixRjtnZtncV-o81xcF06SNqW_TUr6MBIUGKqi7KhJ78QZf9Ovi0zlRaS6ESkyDYQjb0MQZqzCq4DsNnajIb1War2iTVZqPaiJQ5_S7GaLFtAnrr4k8wV7LO0wOJy7dcXG0UUfgd8H_5FyVDjY8</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Zhang, Jing</creator><creator>Zavaliangos, Antonios</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20110501</creationdate><title>Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering</title><author>Zhang, Jing ; Zavaliangos, Antonios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Compacting</topic><topic>Computer simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conductivity</topic><topic>Conductivity phenomena in semiconductors and insulators</topic><topic>Direct current</topic><topic>Electronic transport in condensed matter</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Plasma sintering</topic><topic>Pulsed current</topic><topic>Solid State Physics</topic><topic>Spark plasma sintering</topic><topic>Studies</topic><topic>Temperature distribution</topic><topic>Thermoelectric and thermomagnetic effects</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Zavaliangos, Antonios</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Zavaliangos, Antonios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>40</volume><issue>5</issue><spage>873</spage><epage>878</epage><pages>873-878</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Realistic microstructures of compacted powders formed by spark plasma sintering or field-activated sintering technology were modeled using the discrete finite-element method. Two key thermoelectric characteristics were studied: (1) the effect of the electric current pattern, i.e., direct current (DC) and pulsed current, on temperature distributions in the compacted powders, and (2) the effect of compaction modes, i.e., isostatic compaction and uniaxial compaction, on conductivity. Simulations showed that, for the same electric power input, pulsed current offered faster heating and more uniform temperature distribution in the compact than did DC. Additionally, using uniaxial compaction, the effective conductivity of the compact in the compaction direction was higher than in the transverse direction, by as much as 20%. Experimental measurements confirmed the existence of anisotropy of conductivity in the compact.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-011-1606-0</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2011-05, Vol.40 (5), p.873-878 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_1031308957 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Compacting Computer simulation Condensed matter: electronic structure, electrical, magnetic, and optical properties Conductivity Conductivity phenomena in semiconductors and insulators Direct current Electronic transport in condensed matter Electronics and Microelectronics Exact sciences and technology Finite element analysis Instrumentation Materials Science Mathematical analysis Optical and Electronic Materials Physics Plasma sintering Pulsed current Solid State Physics Spark plasma sintering Studies Temperature distribution Thermoelectric and thermomagnetic effects Thermoelectricity |
title | Discrete Finite-Element Simulation of Thermoelectric Phenomena in Spark Plasma Sintering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Finite-Element%20Simulation%20of%20Thermoelectric%20Phenomena%20in%20Spark%20Plasma%20Sintering&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Zhang,%20Jing&rft.date=2011-05-01&rft.volume=40&rft.issue=5&rft.spage=873&rft.epage=878&rft.pages=873-878&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-011-1606-0&rft_dat=%3Cproquest_cross%3E1031308957%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-46a133e6a40be38b93a6ee0d8964372b9fabfd64952ca498657d21c4dfa1977a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=866304573&rft_id=info:pmid/&rfr_iscdi=true |