Loading…

Status of the LHCb magnet system

The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/ s/sup -1/, which should be obtained from the beginning of the LHC operation. The LHCb detector exploit...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity 2002-03, Vol.12 (1), p.366-371
Main Authors: Andre, J., Charra, P., Flegel, W., Giudici, P.A., Jamet, O., Lancon, P., Losasso, M., Rohner, F., Rosset, C.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-1ca404b79655ae6876588d958b2a50a0cac03b0f304dd07374e768540501742d3
cites
container_end_page 371
container_issue 1
container_start_page 366
container_title IEEE transactions on applied superconductivity
container_volume 12
creator Andre, J.
Charra, P.
Flegel, W.
Giudici, P.A.
Jamet, O.
Lancon, P.
Losasso, M.
Rohner, F.
Rosset, C.
description The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/ s/sup -1/, which should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single-arm spectrometer for the separation and momentum measurement of the charged particles with a large dipole magnet of a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically. The magnet is designed for a total integrated field of 4 Tm. The pole gap is 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The overall length of the magnet (in beam direction) is 5 m and its total weight about 1500 t. The power dissipation in the aluminum coils will be 4.2 MW. The magnet yoke is constructed from low carbon steel plates of 100 mm thickness. The maximum weight of one plate does not exceed 25 t. The coils are wound from large hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter for the pressurized demineralized water. Each of the two coils is composed of 15 monolayer pancakes of 15 turns per pancake. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture of /spl plusmn/300 mrad and the pole pieces have large shims. The underlying magnet design, its present status and milestones will be reviewed.
doi_str_mv 10.1109/TASC.2002.1018421
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031314812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1018421</ieee_id><sourcerecordid>28586990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-1ca404b79655ae6876588d958b2a50a0cac03b0f304dd07374e768540501742d3</originalsourceid><addsrcrecordid>eNqFkT1PwzAURSMEEqXwAxBLhARiSXnPH4k9VhFQpEoMLbPlOA6kykeJk6H_HlepBGKgkz2ce-z3bhBcI8wQQT6u56t0RgDIDAEFI3gSTJBzERGO_NTfgWMkCKHnwYVzGwBkgvFJEK563Q8ubIuw_7ThcpFmYa0_GtuHbud6W18GZ4WunL06nNPg_flpnS6i5dvLazpfRoYT1kdoNAOWJTLmXNtYJDEXIpdcZERz0GC0AZpBQYHlOSQ0YTaJBWfAARNGcjoN7kfvtmu_But6VZfO2KrSjW0Hp4jwv5c-eRzkIpYSjoNJgpJS4cGHf0EEitTvC4lHb_-gm3boGr8YJWPJEGIRewhHyHStc50t1LYra93tvEnt21L7ttS-LXVoy2fuDmLtjK6KTjemdD9B6l8fh7oZudJa-8s7Wr4Bcm-Xxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>969410686</pqid></control><display><type>article</type><title>Status of the LHCb magnet system</title><source>IEEE Xplore (Online service)</source><creator>Andre, J. ; Charra, P. ; Flegel, W. ; Giudici, P.A. ; Jamet, O. ; Lancon, P. ; Losasso, M. ; Rohner, F. ; Rosset, C.</creator><creatorcontrib>Andre, J. ; Charra, P. ; Flegel, W. ; Giudici, P.A. ; Jamet, O. ; Lancon, P. ; Losasso, M. ; Rohner, F. ; Rosset, C.</creatorcontrib><description>The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/ s/sup -1/, which should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single-arm spectrometer for the separation and momentum measurement of the charged particles with a large dipole magnet of a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically. The magnet is designed for a total integrated field of 4 Tm. The pole gap is 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The overall length of the magnet (in beam direction) is 5 m and its total weight about 1500 t. The power dissipation in the aluminum coils will be 4.2 MW. The magnet yoke is constructed from low carbon steel plates of 100 mm thickness. The maximum weight of one plate does not exceed 25 t. The coils are wound from large hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter for the pressurized demineralized water. Each of the two coils is composed of 15 monolayer pancakes of 15 turns per pancake. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture of /spl plusmn/300 mrad and the pole pieces have large shims. The underlying magnet design, its present status and milestones will be reviewed.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2002.1018421</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Aluminum ; Apertures ; Applied sciences ; Channels ; Charged particles ; Coils ; Current measurement ; Detectors ; Electrical engineering. Electrical power engineering ; Electromagnets ; Exact sciences and technology ; Large Hadron Collider ; Magnetic field measurement ; Magnetic separation ; Particle measurements ; Plates ; Poles ; Spectroscopy ; Various equipment and components</subject><ispartof>IEEE transactions on applied superconductivity, 2002-03, Vol.12 (1), p.366-371</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-1ca404b79655ae6876588d958b2a50a0cac03b0f304dd07374e768540501742d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1018421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13812990$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Andre, J.</creatorcontrib><creatorcontrib>Charra, P.</creatorcontrib><creatorcontrib>Flegel, W.</creatorcontrib><creatorcontrib>Giudici, P.A.</creatorcontrib><creatorcontrib>Jamet, O.</creatorcontrib><creatorcontrib>Lancon, P.</creatorcontrib><creatorcontrib>Losasso, M.</creatorcontrib><creatorcontrib>Rohner, F.</creatorcontrib><creatorcontrib>Rosset, C.</creatorcontrib><title>Status of the LHCb magnet system</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/ s/sup -1/, which should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single-arm spectrometer for the separation and momentum measurement of the charged particles with a large dipole magnet of a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically. The magnet is designed for a total integrated field of 4 Tm. The pole gap is 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The overall length of the magnet (in beam direction) is 5 m and its total weight about 1500 t. The power dissipation in the aluminum coils will be 4.2 MW. The magnet yoke is constructed from low carbon steel plates of 100 mm thickness. The maximum weight of one plate does not exceed 25 t. The coils are wound from large hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter for the pressurized demineralized water. Each of the two coils is composed of 15 monolayer pancakes of 15 turns per pancake. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture of /spl plusmn/300 mrad and the pole pieces have large shims. The underlying magnet design, its present status and milestones will be reviewed.</description><subject>Aluminum</subject><subject>Apertures</subject><subject>Applied sciences</subject><subject>Channels</subject><subject>Charged particles</subject><subject>Coils</subject><subject>Current measurement</subject><subject>Detectors</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Large Hadron Collider</subject><subject>Magnetic field measurement</subject><subject>Magnetic separation</subject><subject>Particle measurements</subject><subject>Plates</subject><subject>Poles</subject><subject>Spectroscopy</subject><subject>Various equipment and components</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAURSMEEqXwAxBLhARiSXnPH4k9VhFQpEoMLbPlOA6kykeJk6H_HlepBGKgkz2ce-z3bhBcI8wQQT6u56t0RgDIDAEFI3gSTJBzERGO_NTfgWMkCKHnwYVzGwBkgvFJEK563Q8ubIuw_7ThcpFmYa0_GtuHbud6W18GZ4WunL06nNPg_flpnS6i5dvLazpfRoYT1kdoNAOWJTLmXNtYJDEXIpdcZERz0GC0AZpBQYHlOSQ0YTaJBWfAARNGcjoN7kfvtmu_But6VZfO2KrSjW0Hp4jwv5c-eRzkIpYSjoNJgpJS4cGHf0EEitTvC4lHb_-gm3boGr8YJWPJEGIRewhHyHStc50t1LYra93tvEnt21L7ttS-LXVoy2fuDmLtjK6KTjemdD9B6l8fh7oZudJa-8s7Wr4Bcm-Xxw</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Andre, J.</creator><creator>Charra, P.</creator><creator>Flegel, W.</creator><creator>Giudici, P.A.</creator><creator>Jamet, O.</creator><creator>Lancon, P.</creator><creator>Losasso, M.</creator><creator>Rohner, F.</creator><creator>Rosset, C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7QF</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>8BQ</scope></search><sort><creationdate>20020301</creationdate><title>Status of the LHCb magnet system</title><author>Andre, J. ; Charra, P. ; Flegel, W. ; Giudici, P.A. ; Jamet, O. ; Lancon, P. ; Losasso, M. ; Rohner, F. ; Rosset, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-1ca404b79655ae6876588d958b2a50a0cac03b0f304dd07374e768540501742d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aluminum</topic><topic>Apertures</topic><topic>Applied sciences</topic><topic>Channels</topic><topic>Charged particles</topic><topic>Coils</topic><topic>Current measurement</topic><topic>Detectors</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Large Hadron Collider</topic><topic>Magnetic field measurement</topic><topic>Magnetic separation</topic><topic>Particle measurements</topic><topic>Plates</topic><topic>Poles</topic><topic>Spectroscopy</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andre, J.</creatorcontrib><creatorcontrib>Charra, P.</creatorcontrib><creatorcontrib>Flegel, W.</creatorcontrib><creatorcontrib>Giudici, P.A.</creatorcontrib><creatorcontrib>Jamet, O.</creatorcontrib><creatorcontrib>Lancon, P.</creatorcontrib><creatorcontrib>Losasso, M.</creatorcontrib><creatorcontrib>Rohner, F.</creatorcontrib><creatorcontrib>Rosset, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>METADEX</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andre, J.</au><au>Charra, P.</au><au>Flegel, W.</au><au>Giudici, P.A.</au><au>Jamet, O.</au><au>Lancon, P.</au><au>Losasso, M.</au><au>Rohner, F.</au><au>Rosset, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Status of the LHCb magnet system</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2002-03-01</date><risdate>2002</risdate><volume>12</volume><issue>1</issue><spage>366</spage><epage>371</epage><pages>366-371</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The LHCb experiment focuses on the precision measurement of CP violation and rare decays in the B-meson system. It plans to operate with an average luminosity of 2 /spl times/ 10/sup 32/ cm/sup -2/ s/sup -1/, which should be obtained from the beginning of the LHC operation. The LHCb detector exploits the forward region of the pp collisions at the LHC collider. It requires a single-arm spectrometer for the separation and momentum measurement of the charged particles with a large dipole magnet of a free aperture of /spl plusmn/300 mrad horizontally and /spl plusmn/250 mrad vertically. The magnet is designed for a total integrated field of 4 Tm. The pole gap is 2.2 to 3.5 m vertically (the direction of the field) and 2.6 to 4.2 m horizontally. The overall length of the magnet (in beam direction) is 5 m and its total weight about 1500 t. The power dissipation in the aluminum coils will be 4.2 MW. The magnet yoke is constructed from low carbon steel plates of 100 mm thickness. The maximum weight of one plate does not exceed 25 t. The coils are wound from large hollow aluminum conductor of 50 mm /spl times/ 50 mm cross-section with a central cooling channel of 25 mm diameter for the pressurized demineralized water. Each of the two coils is composed of 15 monolayer pancakes of 15 turns per pancake. To reach good field quality the coils are bent by 45/spl deg/ toward the gap along the horizontal aperture of /spl plusmn/300 mrad and the pole pieces have large shims. The underlying magnet design, its present status and milestones will be reviewed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2002.1018421</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2002-03, Vol.12 (1), p.366-371
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_1031314812
source IEEE Xplore (Online service)
subjects Aluminum
Apertures
Applied sciences
Channels
Charged particles
Coils
Current measurement
Detectors
Electrical engineering. Electrical power engineering
Electromagnets
Exact sciences and technology
Large Hadron Collider
Magnetic field measurement
Magnetic separation
Particle measurements
Plates
Poles
Spectroscopy
Various equipment and components
title Status of the LHCb magnet system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A26%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Status%20of%20the%20LHCb%20magnet%20system&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Andre,%20J.&rft.date=2002-03-01&rft.volume=12&rft.issue=1&rft.spage=366&rft.epage=371&rft.pages=366-371&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2002.1018421&rft_dat=%3Cproquest_pasca%3E28586990%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-1ca404b79655ae6876588d958b2a50a0cac03b0f304dd07374e768540501742d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=969410686&rft_id=info:pmid/&rft_ieee_id=1018421&rfr_iscdi=true