Loading…

Residual strength evaluation of concrete structural components under fatigue loading

This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Va...

Full description

Saved in:
Bibliographic Details
Published in:Sadhana (Bangalore) 2012-02, Vol.37 (1), p.133-147
Main Authors: MURTHY, A RAMA CHANDRA, PALANI, G S, IYER, NAGESH R, GOPINATH, SMITHA, PRASAD, B K RAGHU
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents methodologies for residual strength evaluation of concrete structural components using linear elastic and nonlinear fracture mechanics principles. The effect of cohesive forces due to aggregate bridging has been represented mathematically by employing tension softening models. Various tension softening models such as linear, bilinear, trilinear, exponential and power curve have been described with appropriate expressions. These models have been validated by predicting the remaining life of concrete structural components and comparing with the corresponding experimental values available in the literature. It is observed that the predicted remaining life by using power model and modified bi-linear model is in good agreement with the corresponding experimental values. Residual strength has also been predicted using these tension softening models and observed that the predicted residual strength is in good agreement with the corresponding analytical values in the literature. In general, it is observed that the variation of predicted residual moment with the chosen tension softening model follows the similar trend as in the case of remaining life. Linear model predicts large residual moments followed by trilinear, bilinear and power models.
ISSN:0256-2499
0973-7677
DOI:10.1007/s12046-012-0070-8