Loading…

Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis

The present study demonstrates a novel approach by which titanium foils coated with LiMn2O4 nanocrystals can be processed into a high-surface-area electrode for rechargeable batteries. A detailed study has been performed to elucidate how surface morphology and redox reaction behaviors underlying the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanomaterials 2012-01, Vol.2012
Main Authors: Parvathy, S, Ranjusha, R, Sujith, K, Subramanian, K R V, Sivakumar, N, Nair, Shantikumar V, Balakrishnan, Avinash
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title Journal of nanomaterials
container_volume 2012
creator Parvathy, S
Ranjusha, R
Sujith, K
Subramanian, K R V
Sivakumar, N
Nair, Shantikumar V
Balakrishnan, Avinash
description The present study demonstrates a novel approach by which titanium foils coated with LiMn2O4 nanocrystals can be processed into a high-surface-area electrode for rechargeable batteries. A detailed study has been performed to elucidate how surface morphology and redox reaction behaviors underlying these electrodes impact the cyclic and capacity behavior. These nanocrystals were synthesized by in situ sintering and exhibited a uniform size of ~55 nm. A direct deposition technique based on electrophoresis is employed to coat LiMn2O4 nanocrystals onto titanium substrates. From the analysis of the relevant electrochemical parameters, an intrinsic correlation between the cyclability and particle size has been deduced and explained in accordance with the Li intercalation/deintercalation process. Depending on the particle size incorporated on these electrodes, it is seen that in terms of capacitance fading, for nanoparticles cyclability is better than their micron-sized counterparts. It has been shown that electrodes based on such nanocrystalline thin film system can allow significant room for improvement in the cyclic performance at the electrode/electrolyte interface.
doi_str_mv 10.1155/2012/259684
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031330649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683751461</sourcerecordid><originalsourceid>FETCH-LOGICAL-p619-3086fc3df8ed14fc11e0ea38fa0cee43b7c9979a4457b521c599f9975c5b25c23</originalsourceid><addsrcrecordid>eNpdjs1KQzEUhIMoWKsrXyDgxs21Ofm5uVlKaVWorYvuS5qe2JQ0qUkr-PZeUFy4mmHmYxhCboE9ACg14gz4iCvTdvKMDKDtdCOBm_M_D-ySXNW6Y0wqo_iAzMdfLob0Tt-w-Fz2Njmk2dO5TdmVr3q0sa-RzsJr4nQh6XIbEp2GuK_0M1g6ieiOJR-2uWAN9ZpceBsr3vzqkCynk-X4uZktnl7Gj7Pm0IJpBOta78TGd7gB6R0AMrSi85Y5RCnW2hmjjZVS6bXi4JQxvk-UU2uuHBdDcv8zeyj544T1uNqH6jBGmzCf6gqYACFYK02P3v1Dd_lUUn-up8Bo3bJOi299YFw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019776087</pqid></control><display><type>article</type><title>Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Parvathy, S ; Ranjusha, R ; Sujith, K ; Subramanian, K R V ; Sivakumar, N ; Nair, Shantikumar V ; Balakrishnan, Avinash</creator><creatorcontrib>Parvathy, S ; Ranjusha, R ; Sujith, K ; Subramanian, K R V ; Sivakumar, N ; Nair, Shantikumar V ; Balakrishnan, Avinash</creatorcontrib><description>The present study demonstrates a novel approach by which titanium foils coated with LiMn2O4 nanocrystals can be processed into a high-surface-area electrode for rechargeable batteries. A detailed study has been performed to elucidate how surface morphology and redox reaction behaviors underlying these electrodes impact the cyclic and capacity behavior. These nanocrystals were synthesized by in situ sintering and exhibited a uniform size of ~55 nm. A direct deposition technique based on electrophoresis is employed to coat LiMn2O4 nanocrystals onto titanium substrates. From the analysis of the relevant electrochemical parameters, an intrinsic correlation between the cyclability and particle size has been deduced and explained in accordance with the Li intercalation/deintercalation process. Depending on the particle size incorporated on these electrodes, it is seen that in terms of capacitance fading, for nanoparticles cyclability is better than their micron-sized counterparts. It has been shown that electrodes based on such nanocrystalline thin film system can allow significant room for improvement in the cyclic performance at the electrode/electrolyte interface.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2012/259684</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Electrodes ; Electrophoresis ; Fading ; Foils ; Fourier transforms ; Nanocrystals ; Nanomaterials ; Particle size ; Scanning electron microscopy ; Studies ; Thin films ; Titanium</subject><ispartof>Journal of nanomaterials, 2012-01, Vol.2012</ispartof><rights>Copyright © 2012 S. Parvathy et al. S. Parvathy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1019776087/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1019776087?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,37011,44588,74896</link.rule.ids></links><search><creatorcontrib>Parvathy, S</creatorcontrib><creatorcontrib>Ranjusha, R</creatorcontrib><creatorcontrib>Sujith, K</creatorcontrib><creatorcontrib>Subramanian, K R V</creatorcontrib><creatorcontrib>Sivakumar, N</creatorcontrib><creatorcontrib>Nair, Shantikumar V</creatorcontrib><creatorcontrib>Balakrishnan, Avinash</creatorcontrib><title>Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis</title><title>Journal of nanomaterials</title><description>The present study demonstrates a novel approach by which titanium foils coated with LiMn2O4 nanocrystals can be processed into a high-surface-area electrode for rechargeable batteries. A detailed study has been performed to elucidate how surface morphology and redox reaction behaviors underlying these electrodes impact the cyclic and capacity behavior. These nanocrystals were synthesized by in situ sintering and exhibited a uniform size of ~55 nm. A direct deposition technique based on electrophoresis is employed to coat LiMn2O4 nanocrystals onto titanium substrates. From the analysis of the relevant electrochemical parameters, an intrinsic correlation between the cyclability and particle size has been deduced and explained in accordance with the Li intercalation/deintercalation process. Depending on the particle size incorporated on these electrodes, it is seen that in terms of capacitance fading, for nanoparticles cyclability is better than their micron-sized counterparts. It has been shown that electrodes based on such nanocrystalline thin film system can allow significant room for improvement in the cyclic performance at the electrode/electrolyte interface.</description><subject>Electrodes</subject><subject>Electrophoresis</subject><subject>Fading</subject><subject>Foils</subject><subject>Fourier transforms</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Particle size</subject><subject>Scanning electron microscopy</subject><subject>Studies</subject><subject>Thin films</subject><subject>Titanium</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdjs1KQzEUhIMoWKsrXyDgxs21Ofm5uVlKaVWorYvuS5qe2JQ0qUkr-PZeUFy4mmHmYxhCboE9ACg14gz4iCvTdvKMDKDtdCOBm_M_D-ySXNW6Y0wqo_iAzMdfLob0Tt-w-Fz2Njmk2dO5TdmVr3q0sa-RzsJr4nQh6XIbEp2GuK_0M1g6ieiOJR-2uWAN9ZpceBsr3vzqkCynk-X4uZktnl7Gj7Pm0IJpBOta78TGd7gB6R0AMrSi85Y5RCnW2hmjjZVS6bXi4JQxvk-UU2uuHBdDcv8zeyj544T1uNqH6jBGmzCf6gqYACFYK02P3v1Dd_lUUn-up8Bo3bJOi299YFw0</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Parvathy, S</creator><creator>Ranjusha, R</creator><creator>Sujith, K</creator><creator>Subramanian, K R V</creator><creator>Sivakumar, N</creator><creator>Nair, Shantikumar V</creator><creator>Balakrishnan, Avinash</creator><general>Hindawi Limited</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120101</creationdate><title>Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis</title><author>Parvathy, S ; Ranjusha, R ; Sujith, K ; Subramanian, K R V ; Sivakumar, N ; Nair, Shantikumar V ; Balakrishnan, Avinash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p619-3086fc3df8ed14fc11e0ea38fa0cee43b7c9979a4457b521c599f9975c5b25c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Electrodes</topic><topic>Electrophoresis</topic><topic>Fading</topic><topic>Foils</topic><topic>Fourier transforms</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Particle size</topic><topic>Scanning electron microscopy</topic><topic>Studies</topic><topic>Thin films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parvathy, S</creatorcontrib><creatorcontrib>Ranjusha, R</creatorcontrib><creatorcontrib>Sujith, K</creatorcontrib><creatorcontrib>Subramanian, K R V</creatorcontrib><creatorcontrib>Sivakumar, N</creatorcontrib><creatorcontrib>Nair, Shantikumar V</creatorcontrib><creatorcontrib>Balakrishnan, Avinash</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parvathy, S</au><au>Ranjusha, R</au><au>Sujith, K</au><au>Subramanian, K R V</au><au>Sivakumar, N</au><au>Nair, Shantikumar V</au><au>Balakrishnan, Avinash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis</atitle><jtitle>Journal of nanomaterials</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>The present study demonstrates a novel approach by which titanium foils coated with LiMn2O4 nanocrystals can be processed into a high-surface-area electrode for rechargeable batteries. A detailed study has been performed to elucidate how surface morphology and redox reaction behaviors underlying these electrodes impact the cyclic and capacity behavior. These nanocrystals were synthesized by in situ sintering and exhibited a uniform size of ~55 nm. A direct deposition technique based on electrophoresis is employed to coat LiMn2O4 nanocrystals onto titanium substrates. From the analysis of the relevant electrochemical parameters, an intrinsic correlation between the cyclability and particle size has been deduced and explained in accordance with the Li intercalation/deintercalation process. Depending on the particle size incorporated on these electrodes, it is seen that in terms of capacitance fading, for nanoparticles cyclability is better than their micron-sized counterparts. It has been shown that electrodes based on such nanocrystalline thin film system can allow significant room for improvement in the cyclic performance at the electrode/electrolyte interface.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/2012/259684</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4110
ispartof Journal of nanomaterials, 2012-01, Vol.2012
issn 1687-4110
1687-4129
language eng
recordid cdi_proquest_miscellaneous_1031330649
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database
subjects Electrodes
Electrophoresis
Fading
Foils
Fourier transforms
Nanocrystals
Nanomaterials
Particle size
Scanning electron microscopy
Studies
Thin films
Titanium
title Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cycling%20Performance%20of%20Nanocrystalline%20LiMn2%20O4%20Thin%20Films%20via%20Electrophoresis&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Parvathy,%20S&rft.date=2012-01-01&rft.volume=2012&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2012/259684&rft_dat=%3Cproquest%3E2683751461%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p619-3086fc3df8ed14fc11e0ea38fa0cee43b7c9979a4457b521c599f9975c5b25c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019776087&rft_id=info:pmid/&rfr_iscdi=true