Loading…
Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis
The present study demonstrates a novel approach by which titanium foils coated with LiMn2O4 nanocrystals can be processed into a high-surface-area electrode for rechargeable batteries. A detailed study has been performed to elucidate how surface morphology and redox reaction behaviors underlying the...
Saved in:
Published in: | Journal of nanomaterials 2012-01, Vol.2012 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of nanomaterials |
container_volume | 2012 |
creator | Parvathy, S Ranjusha, R Sujith, K Subramanian, K R V Sivakumar, N Nair, Shantikumar V Balakrishnan, Avinash |
description | The present study demonstrates a novel approach by which titanium foils coated with LiMn2O4 nanocrystals can be processed into a high-surface-area electrode for rechargeable batteries. A detailed study has been performed to elucidate how surface morphology and redox reaction behaviors underlying these electrodes impact the cyclic and capacity behavior. These nanocrystals were synthesized by in situ sintering and exhibited a uniform size of ~55 nm. A direct deposition technique based on electrophoresis is employed to coat LiMn2O4 nanocrystals onto titanium substrates. From the analysis of the relevant electrochemical parameters, an intrinsic correlation between the cyclability and particle size has been deduced and explained in accordance with the Li intercalation/deintercalation process. Depending on the particle size incorporated on these electrodes, it is seen that in terms of capacitance fading, for nanoparticles cyclability is better than their micron-sized counterparts. It has been shown that electrodes based on such nanocrystalline thin film system can allow significant room for improvement in the cyclic performance at the electrode/electrolyte interface. |
doi_str_mv | 10.1155/2012/259684 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031330649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2683751461</sourcerecordid><originalsourceid>FETCH-LOGICAL-p619-3086fc3df8ed14fc11e0ea38fa0cee43b7c9979a4457b521c599f9975c5b25c23</originalsourceid><addsrcrecordid>eNpdjs1KQzEUhIMoWKsrXyDgxs21Ofm5uVlKaVWorYvuS5qe2JQ0qUkr-PZeUFy4mmHmYxhCboE9ACg14gz4iCvTdvKMDKDtdCOBm_M_D-ySXNW6Y0wqo_iAzMdfLob0Tt-w-Fz2Njmk2dO5TdmVr3q0sa-RzsJr4nQh6XIbEp2GuK_0M1g6ieiOJR-2uWAN9ZpceBsr3vzqkCynk-X4uZktnl7Gj7Pm0IJpBOta78TGd7gB6R0AMrSi85Y5RCnW2hmjjZVS6bXi4JQxvk-UU2uuHBdDcv8zeyj544T1uNqH6jBGmzCf6gqYACFYK02P3v1Dd_lUUn-up8Bo3bJOi299YFw0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019776087</pqid></control><display><type>article</type><title>Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Parvathy, S ; Ranjusha, R ; Sujith, K ; Subramanian, K R V ; Sivakumar, N ; Nair, Shantikumar V ; Balakrishnan, Avinash</creator><creatorcontrib>Parvathy, S ; Ranjusha, R ; Sujith, K ; Subramanian, K R V ; Sivakumar, N ; Nair, Shantikumar V ; Balakrishnan, Avinash</creatorcontrib><description>The present study demonstrates a novel approach by which titanium foils coated with LiMn2O4 nanocrystals can be processed into a high-surface-area electrode for rechargeable batteries. A detailed study has been performed to elucidate how surface morphology and redox reaction behaviors underlying these electrodes impact the cyclic and capacity behavior. These nanocrystals were synthesized by in situ sintering and exhibited a uniform size of ~55 nm. A direct deposition technique based on electrophoresis is employed to coat LiMn2O4 nanocrystals onto titanium substrates. From the analysis of the relevant electrochemical parameters, an intrinsic correlation between the cyclability and particle size has been deduced and explained in accordance with the Li intercalation/deintercalation process. Depending on the particle size incorporated on these electrodes, it is seen that in terms of capacitance fading, for nanoparticles cyclability is better than their micron-sized counterparts. It has been shown that electrodes based on such nanocrystalline thin film system can allow significant room for improvement in the cyclic performance at the electrode/electrolyte interface.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2012/259684</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Electrodes ; Electrophoresis ; Fading ; Foils ; Fourier transforms ; Nanocrystals ; Nanomaterials ; Particle size ; Scanning electron microscopy ; Studies ; Thin films ; Titanium</subject><ispartof>Journal of nanomaterials, 2012-01, Vol.2012</ispartof><rights>Copyright © 2012 S. Parvathy et al. S. Parvathy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1019776087/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1019776087?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,37011,44588,74896</link.rule.ids></links><search><creatorcontrib>Parvathy, S</creatorcontrib><creatorcontrib>Ranjusha, R</creatorcontrib><creatorcontrib>Sujith, K</creatorcontrib><creatorcontrib>Subramanian, K R V</creatorcontrib><creatorcontrib>Sivakumar, N</creatorcontrib><creatorcontrib>Nair, Shantikumar V</creatorcontrib><creatorcontrib>Balakrishnan, Avinash</creatorcontrib><title>Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis</title><title>Journal of nanomaterials</title><description>The present study demonstrates a novel approach by which titanium foils coated with LiMn2O4 nanocrystals can be processed into a high-surface-area electrode for rechargeable batteries. A detailed study has been performed to elucidate how surface morphology and redox reaction behaviors underlying these electrodes impact the cyclic and capacity behavior. These nanocrystals were synthesized by in situ sintering and exhibited a uniform size of ~55 nm. A direct deposition technique based on electrophoresis is employed to coat LiMn2O4 nanocrystals onto titanium substrates. From the analysis of the relevant electrochemical parameters, an intrinsic correlation between the cyclability and particle size has been deduced and explained in accordance with the Li intercalation/deintercalation process. Depending on the particle size incorporated on these electrodes, it is seen that in terms of capacitance fading, for nanoparticles cyclability is better than their micron-sized counterparts. It has been shown that electrodes based on such nanocrystalline thin film system can allow significant room for improvement in the cyclic performance at the electrode/electrolyte interface.</description><subject>Electrodes</subject><subject>Electrophoresis</subject><subject>Fading</subject><subject>Foils</subject><subject>Fourier transforms</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Particle size</subject><subject>Scanning electron microscopy</subject><subject>Studies</subject><subject>Thin films</subject><subject>Titanium</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdjs1KQzEUhIMoWKsrXyDgxs21Ofm5uVlKaVWorYvuS5qe2JQ0qUkr-PZeUFy4mmHmYxhCboE9ACg14gz4iCvTdvKMDKDtdCOBm_M_D-ySXNW6Y0wqo_iAzMdfLob0Tt-w-Fz2Njmk2dO5TdmVr3q0sa-RzsJr4nQh6XIbEp2GuK_0M1g6ieiOJR-2uWAN9ZpceBsr3vzqkCynk-X4uZktnl7Gj7Pm0IJpBOta78TGd7gB6R0AMrSi85Y5RCnW2hmjjZVS6bXi4JQxvk-UU2uuHBdDcv8zeyj544T1uNqH6jBGmzCf6gqYACFYK02P3v1Dd_lUUn-up8Bo3bJOi299YFw0</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Parvathy, S</creator><creator>Ranjusha, R</creator><creator>Sujith, K</creator><creator>Subramanian, K R V</creator><creator>Sivakumar, N</creator><creator>Nair, Shantikumar V</creator><creator>Balakrishnan, Avinash</creator><general>Hindawi Limited</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120101</creationdate><title>Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis</title><author>Parvathy, S ; Ranjusha, R ; Sujith, K ; Subramanian, K R V ; Sivakumar, N ; Nair, Shantikumar V ; Balakrishnan, Avinash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p619-3086fc3df8ed14fc11e0ea38fa0cee43b7c9979a4457b521c599f9975c5b25c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Electrodes</topic><topic>Electrophoresis</topic><topic>Fading</topic><topic>Foils</topic><topic>Fourier transforms</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Particle size</topic><topic>Scanning electron microscopy</topic><topic>Studies</topic><topic>Thin films</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parvathy, S</creatorcontrib><creatorcontrib>Ranjusha, R</creatorcontrib><creatorcontrib>Sujith, K</creatorcontrib><creatorcontrib>Subramanian, K R V</creatorcontrib><creatorcontrib>Sivakumar, N</creatorcontrib><creatorcontrib>Nair, Shantikumar V</creatorcontrib><creatorcontrib>Balakrishnan, Avinash</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parvathy, S</au><au>Ranjusha, R</au><au>Sujith, K</au><au>Subramanian, K R V</au><au>Sivakumar, N</au><au>Nair, Shantikumar V</au><au>Balakrishnan, Avinash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis</atitle><jtitle>Journal of nanomaterials</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>The present study demonstrates a novel approach by which titanium foils coated with LiMn2O4 nanocrystals can be processed into a high-surface-area electrode for rechargeable batteries. A detailed study has been performed to elucidate how surface morphology and redox reaction behaviors underlying these electrodes impact the cyclic and capacity behavior. These nanocrystals were synthesized by in situ sintering and exhibited a uniform size of ~55 nm. A direct deposition technique based on electrophoresis is employed to coat LiMn2O4 nanocrystals onto titanium substrates. From the analysis of the relevant electrochemical parameters, an intrinsic correlation between the cyclability and particle size has been deduced and explained in accordance with the Li intercalation/deintercalation process. Depending on the particle size incorporated on these electrodes, it is seen that in terms of capacitance fading, for nanoparticles cyclability is better than their micron-sized counterparts. It has been shown that electrodes based on such nanocrystalline thin film system can allow significant room for improvement in the cyclic performance at the electrode/electrolyte interface.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1155/2012/259684</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4110 |
ispartof | Journal of nanomaterials, 2012-01, Vol.2012 |
issn | 1687-4110 1687-4129 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031330649 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database |
subjects | Electrodes Electrophoresis Fading Foils Fourier transforms Nanocrystals Nanomaterials Particle size Scanning electron microscopy Studies Thin films Titanium |
title | Cycling Performance of Nanocrystalline LiMn2 O4 Thin Films via Electrophoresis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cycling%20Performance%20of%20Nanocrystalline%20LiMn2%20O4%20Thin%20Films%20via%20Electrophoresis&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Parvathy,%20S&rft.date=2012-01-01&rft.volume=2012&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2012/259684&rft_dat=%3Cproquest%3E2683751461%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p619-3086fc3df8ed14fc11e0ea38fa0cee43b7c9979a4457b521c599f9975c5b25c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019776087&rft_id=info:pmid/&rfr_iscdi=true |