Loading…
Anti-inflammatory effects of several plant extracts on porcine alveolar macrophages in vitro
Certain plant extracts are bioactive substances of some foods or traditional herbs, known to possess antioxidant, antibacterial, and perhaps immunoregulatory effects. This study investigated the in vitro anti-inflammatory effects of 7 plant extracts (anethol, capsicum oleoresin, carvacrol, cinnamald...
Saved in:
Published in: | Journal of animal science 2012-08, Vol.90 (8), p.2774-2783 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Certain plant extracts are bioactive substances of some foods or traditional herbs, known to possess antioxidant, antibacterial, and perhaps immunoregulatory effects. This study investigated the in vitro anti-inflammatory effects of 7 plant extracts (anethol, capsicum oleoresin, carvacrol, cinnamaldehyde, eugenol, garlicon, and turmeric oleoresin) on porcine alveolar macrophages collected from weaned pigs (n = 6 donor pigs) by bronchoalveolar lavage. The experimental design for this assay was a 2 [with or without 1 μg lipopolysaccharide (LPS)/mL] × 5 (5 different amounts of each plant extract) factorial arrangements in a randomized complete block design. The application of plant extracts were 0, 25, 50, 100, and 200 μg/mL, except for cinnamaldehyde and turmeric oleoresin, which were 0, 2.5, 5, 10, and 20 μg/mL. The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay was used to determine the number of live cells, Griess assay was applied to detect nitric oxide (NO) production, and ELISA was used to measure tumor necrosis factor-α (TNF-α), IL-1β, transforming growth factor-β (TGF-β), and IL-10 in the cell culture supernatants of macrophages. The LPS increased (P < 0.001) the secretion of TNF-α, IL-1β, and TGF-β. Without LPS, anethol and capsicum oleoresin increased (linear, P < 0.001) cell viability of macrophages, whereas other plant extracts reduced (linear, P < 0.001) it. Anethol, capsicum oleoresin, and carvacrol enhanced (linear, P < 0.001) the cell proliferation of LPS-treated macrophages. Without LPS, anethol, capsicum oleoresin, cinnamaldehyde, or turmeric oleoresin stimulated TNF-α secretion, whereas all plant extracts except eugenol enhanced IL-1β concentration in the supernatants of macrophages. However, all plant extracts suppressed (linear, P < 0.001) TNF-α, and all plant extracts except turmeric oleoresin decreased (linear, P < 0.05) IL-1β secretion from LPS-treated macrophages. Anethol and capsicum oleoresin decreased (linear, P < 0.001) TGF-β from macrophages in the absence of LPS, but the other plant extracts increased it. Anethol, capsicum oleoresin, and carvacrol also suppressed (linear, P < 0.001) TGF-β from macrophages with LPS stimulation; the other plant extracts enhanced or did not affect it. The anti-inflammatory cytokine, IL-10, was not detected in any supernatants. Only very low amounts of NO were detected in the supernatants of macrophages. In conclusion, the TNF-α results indicate all plant extracts tested h |
---|---|
ISSN: | 1525-3163 |
DOI: | 10.2527/jas.2011-4304 |