Loading…

Radiative slab heating analysis for various fuel gas compositions in an axial-fired reheating furnace

A transient radiative slab heating analysis was performed to investigate the effect of various fuel mixtures on the performance of an axial-fired reheating furnace. The various fuel mixtures tested were assumed to be attained by mixing COG (coke oven gas) and BFG (blast furnace gas), which are the t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2012-07, Vol.55 (15-16), p.4029-4036
Main Authors: Han, Sang Heon, Chang, Daejun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A transient radiative slab heating analysis was performed to investigate the effect of various fuel mixtures on the performance of an axial-fired reheating furnace. The various fuel mixtures tested were assumed to be attained by mixing COG (coke oven gas) and BFG (blast furnace gas), which are the two main byproduct gases found in the integrated steel mill industry. The numerical prediction of radiative heat transfer was calculated using an FVM radiation solving method, which is a well-known and efficient method for curvilinear coordinates. The WSGGM (weighted sum of gray gas model) was also adopted to calculate the radiative heat transfer in composition dependent media. The entire furnace was divided into fourteen sub-zones to calculate the radiative thermal characteristics of the furnace without flow field calculations. Each sub-zone was assumed to have homogeneous media and wall temperatures. All of the medium and wall temperatures were computed by calculating the overall heat balance using some relevant assumptions. The overall heat balance was satisfied when the net heat input equaled the three sources of heat loss in each sub-zone, wall loss, skid loss, and slab heating loss.
ISSN:0017-9310
1879-2189
DOI:10.1016/j.ijheatmasstransfer.2012.03.041