Loading…

Role of oxidative stress in diabetes-mediated vascular dysfunction: Unifying hypothesis of diabetes revisited

Abstract Oxidative stress is recognized as a key participant in the development of diabetic complications in the vasculature. One of the seminal studies advancing the role of oxidative stress in vascular endothelial cells proposed that oxidative stress-mediated diversion of glycolytic intermediates...

Full description

Saved in:
Bibliographic Details
Published in:Vascular pharmacology 2012-11, Vol.57 (5), p.139-149
Main Authors: Schaffer, Stephen W, Jong, Chian Ju, Mozaffari, Mahmood
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-9092203e72045d8f4547b2223201553ddb8f0f1dac3587df55195a13c76e23a03
cites cdi_FETCH-LOGICAL-c474t-9092203e72045d8f4547b2223201553ddb8f0f1dac3587df55195a13c76e23a03
container_end_page 149
container_issue 5
container_start_page 139
container_title Vascular pharmacology
container_volume 57
creator Schaffer, Stephen W
Jong, Chian Ju
Mozaffari, Mahmood
description Abstract Oxidative stress is recognized as a key participant in the development of diabetic complications in the vasculature. One of the seminal studies advancing the role of oxidative stress in vascular endothelial cells proposed that oxidative stress-mediated diversion of glycolytic intermediates into pathological pathways was a key underlying element in the development of diabetic complications. It is widely recognized that flux through glycolysis slows during diabetes. However, several bottlenecks develop in the glycolytic pathway, including glucose transport, phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase. Of these limiting steps in glycolysis, glyceraldehyde-3-phosphate dehydrogenase is most sensitive to oxidative stress, leading to the hypothesis that glyceraldehyde-3-phosphate inactivation by ribosylation underlies the diversion of glycolytic intermediates into pathological pathways. However, recent studies question the mechanism underlying the effect of reactive oxygen species on key enzymes of the glycolytic pathway. The present review critiques the major premises of the hypothesis and concludes that further study of the role of oxidative stress in the development of diabetes-mediated vasculature dysfunction is warranted.
doi_str_mv 10.1016/j.vph.2012.03.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038070176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1537189112000675</els_id><sourcerecordid>1038070176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-9092203e72045d8f4547b2223201553ddb8f0f1dac3587df55195a13c76e23a03</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEoqXwA7ggH7kkjO04TkBCQhVfUiUkoGfLa09YL9l48SQR-fc42pYDB04zh_d5pXmmKJ5zqDjw5tWhWk77SgAXFcgKQD0oLnmru1I2dfcw70rqkrcdvyieEB0AeNs23ePiQoi6hUbwy-L4NQ7IYs_i7-DtFBZkNCUkYmFkPtgdTkjlEfM6oWeLJTcPNjG_Uj-PbgpxfM1ux9CvYfzB9uspTnukQFvlPc4SLoFC5p8Wj3o7ED67m1fF7Yf3368_lTdfPn6-fndTulrXU9lBJwRI1AJq5du-VrXeCSFkPlUp6f2u7aHn3jqpWu17pXinLJdONyikBXlVvDz3nlL8NSNN5hjI4TDYEeNMhoNsQQPXTY7yc9SlSJSwN6cUjjatOWQ2y-ZgsmWzWTYgTbacmRd39fMuq_lL3GvNgTfnAOYjl4DJkAs4uqwxoZuMj-G_9W__od0QxuDs8BNXpEOc05jtGW4oM-bb9ubty1wAQKOV_AMSwqLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038070176</pqid></control><display><type>article</type><title>Role of oxidative stress in diabetes-mediated vascular dysfunction: Unifying hypothesis of diabetes revisited</title><source>ScienceDirect Journals</source><creator>Schaffer, Stephen W ; Jong, Chian Ju ; Mozaffari, Mahmood</creator><creatorcontrib>Schaffer, Stephen W ; Jong, Chian Ju ; Mozaffari, Mahmood</creatorcontrib><description>Abstract Oxidative stress is recognized as a key participant in the development of diabetic complications in the vasculature. One of the seminal studies advancing the role of oxidative stress in vascular endothelial cells proposed that oxidative stress-mediated diversion of glycolytic intermediates into pathological pathways was a key underlying element in the development of diabetic complications. It is widely recognized that flux through glycolysis slows during diabetes. However, several bottlenecks develop in the glycolytic pathway, including glucose transport, phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase. Of these limiting steps in glycolysis, glyceraldehyde-3-phosphate dehydrogenase is most sensitive to oxidative stress, leading to the hypothesis that glyceraldehyde-3-phosphate inactivation by ribosylation underlies the diversion of glycolytic intermediates into pathological pathways. However, recent studies question the mechanism underlying the effect of reactive oxygen species on key enzymes of the glycolytic pathway. The present review critiques the major premises of the hypothesis and concludes that further study of the role of oxidative stress in the development of diabetes-mediated vasculature dysfunction is warranted.</description><identifier>ISSN: 1537-1891</identifier><identifier>EISSN: 1879-3649</identifier><identifier>DOI: 10.1016/j.vph.2012.03.005</identifier><identifier>PMID: 22480621</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cardiovascular ; Diabetes Mellitus - physiopathology ; Diabetic Angiopathies - physiopathology ; Diabetic complications ; Endothelial Cells - metabolism ; Glyceraldehyde-3-phosphate dehydrogenase inactivation by ribosylation ; Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism ; Glycolysis ; Humans ; Oxidative Stress ; Reactive Nitrogen Species - metabolism ; Reactive Oxygen Species - metabolism ; Vascular damage</subject><ispartof>Vascular pharmacology, 2012-11, Vol.57 (5), p.139-149</ispartof><rights>Elsevier Inc.</rights><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-9092203e72045d8f4547b2223201553ddb8f0f1dac3587df55195a13c76e23a03</citedby><cites>FETCH-LOGICAL-c474t-9092203e72045d8f4547b2223201553ddb8f0f1dac3587df55195a13c76e23a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22480621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaffer, Stephen W</creatorcontrib><creatorcontrib>Jong, Chian Ju</creatorcontrib><creatorcontrib>Mozaffari, Mahmood</creatorcontrib><title>Role of oxidative stress in diabetes-mediated vascular dysfunction: Unifying hypothesis of diabetes revisited</title><title>Vascular pharmacology</title><addtitle>Vascul Pharmacol</addtitle><description>Abstract Oxidative stress is recognized as a key participant in the development of diabetic complications in the vasculature. One of the seminal studies advancing the role of oxidative stress in vascular endothelial cells proposed that oxidative stress-mediated diversion of glycolytic intermediates into pathological pathways was a key underlying element in the development of diabetic complications. It is widely recognized that flux through glycolysis slows during diabetes. However, several bottlenecks develop in the glycolytic pathway, including glucose transport, phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase. Of these limiting steps in glycolysis, glyceraldehyde-3-phosphate dehydrogenase is most sensitive to oxidative stress, leading to the hypothesis that glyceraldehyde-3-phosphate inactivation by ribosylation underlies the diversion of glycolytic intermediates into pathological pathways. However, recent studies question the mechanism underlying the effect of reactive oxygen species on key enzymes of the glycolytic pathway. The present review critiques the major premises of the hypothesis and concludes that further study of the role of oxidative stress in the development of diabetes-mediated vasculature dysfunction is warranted.</description><subject>Animals</subject><subject>Cardiovascular</subject><subject>Diabetes Mellitus - physiopathology</subject><subject>Diabetic Angiopathies - physiopathology</subject><subject>Diabetic complications</subject><subject>Endothelial Cells - metabolism</subject><subject>Glyceraldehyde-3-phosphate dehydrogenase inactivation by ribosylation</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Oxidative Stress</subject><subject>Reactive Nitrogen Species - metabolism</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Vascular damage</subject><issn>1537-1891</issn><issn>1879-3649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEoqXwA7ggH7kkjO04TkBCQhVfUiUkoGfLa09YL9l48SQR-fc42pYDB04zh_d5pXmmKJ5zqDjw5tWhWk77SgAXFcgKQD0oLnmru1I2dfcw70rqkrcdvyieEB0AeNs23ePiQoi6hUbwy-L4NQ7IYs_i7-DtFBZkNCUkYmFkPtgdTkjlEfM6oWeLJTcPNjG_Uj-PbgpxfM1ux9CvYfzB9uspTnukQFvlPc4SLoFC5p8Wj3o7ED67m1fF7Yf3368_lTdfPn6-fndTulrXU9lBJwRI1AJq5du-VrXeCSFkPlUp6f2u7aHn3jqpWu17pXinLJdONyikBXlVvDz3nlL8NSNN5hjI4TDYEeNMhoNsQQPXTY7yc9SlSJSwN6cUjjatOWQ2y-ZgsmWzWTYgTbacmRd39fMuq_lL3GvNgTfnAOYjl4DJkAs4uqwxoZuMj-G_9W__od0QxuDs8BNXpEOc05jtGW4oM-bb9ubty1wAQKOV_AMSwqLQ</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Schaffer, Stephen W</creator><creator>Jong, Chian Ju</creator><creator>Mozaffari, Mahmood</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20121101</creationdate><title>Role of oxidative stress in diabetes-mediated vascular dysfunction: Unifying hypothesis of diabetes revisited</title><author>Schaffer, Stephen W ; Jong, Chian Ju ; Mozaffari, Mahmood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-9092203e72045d8f4547b2223201553ddb8f0f1dac3587df55195a13c76e23a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Cardiovascular</topic><topic>Diabetes Mellitus - physiopathology</topic><topic>Diabetic Angiopathies - physiopathology</topic><topic>Diabetic complications</topic><topic>Endothelial Cells - metabolism</topic><topic>Glyceraldehyde-3-phosphate dehydrogenase inactivation by ribosylation</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Oxidative Stress</topic><topic>Reactive Nitrogen Species - metabolism</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Vascular damage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaffer, Stephen W</creatorcontrib><creatorcontrib>Jong, Chian Ju</creatorcontrib><creatorcontrib>Mozaffari, Mahmood</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Vascular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaffer, Stephen W</au><au>Jong, Chian Ju</au><au>Mozaffari, Mahmood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of oxidative stress in diabetes-mediated vascular dysfunction: Unifying hypothesis of diabetes revisited</atitle><jtitle>Vascular pharmacology</jtitle><addtitle>Vascul Pharmacol</addtitle><date>2012-11-01</date><risdate>2012</risdate><volume>57</volume><issue>5</issue><spage>139</spage><epage>149</epage><pages>139-149</pages><issn>1537-1891</issn><eissn>1879-3649</eissn><abstract>Abstract Oxidative stress is recognized as a key participant in the development of diabetic complications in the vasculature. One of the seminal studies advancing the role of oxidative stress in vascular endothelial cells proposed that oxidative stress-mediated diversion of glycolytic intermediates into pathological pathways was a key underlying element in the development of diabetic complications. It is widely recognized that flux through glycolysis slows during diabetes. However, several bottlenecks develop in the glycolytic pathway, including glucose transport, phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase. Of these limiting steps in glycolysis, glyceraldehyde-3-phosphate dehydrogenase is most sensitive to oxidative stress, leading to the hypothesis that glyceraldehyde-3-phosphate inactivation by ribosylation underlies the diversion of glycolytic intermediates into pathological pathways. However, recent studies question the mechanism underlying the effect of reactive oxygen species on key enzymes of the glycolytic pathway. The present review critiques the major premises of the hypothesis and concludes that further study of the role of oxidative stress in the development of diabetes-mediated vasculature dysfunction is warranted.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22480621</pmid><doi>10.1016/j.vph.2012.03.005</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1537-1891
ispartof Vascular pharmacology, 2012-11, Vol.57 (5), p.139-149
issn 1537-1891
1879-3649
language eng
recordid cdi_proquest_miscellaneous_1038070176
source ScienceDirect Journals
subjects Animals
Cardiovascular
Diabetes Mellitus - physiopathology
Diabetic Angiopathies - physiopathology
Diabetic complications
Endothelial Cells - metabolism
Glyceraldehyde-3-phosphate dehydrogenase inactivation by ribosylation
Glyceraldehyde-3-Phosphate Dehydrogenases - metabolism
Glycolysis
Humans
Oxidative Stress
Reactive Nitrogen Species - metabolism
Reactive Oxygen Species - metabolism
Vascular damage
title Role of oxidative stress in diabetes-mediated vascular dysfunction: Unifying hypothesis of diabetes revisited
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20oxidative%20stress%20in%20diabetes-mediated%20vascular%20dysfunction:%20Unifying%20hypothesis%20of%20diabetes%20revisited&rft.jtitle=Vascular%20pharmacology&rft.au=Schaffer,%20Stephen%20W&rft.date=2012-11-01&rft.volume=57&rft.issue=5&rft.spage=139&rft.epage=149&rft.pages=139-149&rft.issn=1537-1891&rft.eissn=1879-3649&rft_id=info:doi/10.1016/j.vph.2012.03.005&rft_dat=%3Cproquest_cross%3E1038070176%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-9092203e72045d8f4547b2223201553ddb8f0f1dac3587df55195a13c76e23a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038070176&rft_id=info:pmid/22480621&rfr_iscdi=true