Loading…

PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM

There have been many numerical simulations but few analytical results of stability and accuracy of algorithms for computational modeling of fluid-fluid and fluid-structure interaction problems, where two domains corresponding to different fluids (ocean-atmosphere) or a fluid and deformable solid (bl...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on numerical analysis 2009-01, Vol.47 (5), p.3526-3549
Main Authors: CONNORS, JEFFREY M., HOWELL, JASON S., LAYTON, WILLIAM J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33
cites cdi_FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33
container_end_page 3549
container_issue 5
container_start_page 3526
container_title SIAM journal on numerical analysis
container_volume 47
creator CONNORS, JEFFREY M.
HOWELL, JASON S.
LAYTON, WILLIAM J.
description There have been many numerical simulations but few analytical results of stability and accuracy of algorithms for computational modeling of fluid-fluid and fluid-structure interaction problems, where two domains corresponding to different fluids (ocean-atmosphere) or a fluid and deformable solid (blood flow) are separated by an interface. As a simplified model of the first examples, this report considers two heat equations in $\Omega _{1},\Omega _{2}\subset {\Bbb R}^{2}$ adjoined by an interface $I=\Omega _{1},\Omega _{2}\subset {\Bbb R}$ . The heat equations are coupled by a condition that allows energy to pass back and forth across the interface I while preserving the total global energy of the monolithic, coupled problem. To compute approximate solutions to the above problem only using subdomain solvers, two first-order in time, fully discrete methods are presented. The methods consist of an implicit-explicit approach, in which the action across I is lagged, and a partitioned method based on passing interface values back and forth across I. Stability and convergence results are derived for both schemes. Numerical experiments that support the theoretical results are presented.
doi_str_mv 10.1137/080740891
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038236907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25735325</jstor_id><sourcerecordid>25735325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33</originalsourceid><addsrcrecordid>eNpdkF9PwjAUxRujiYg--AFMGp_0Ydo_W7smvowxsMmgC874uJTSJRBg2MKD394SDA8-3dzcX8495wBwj9ELxpS_ohTxGKUCX4AeRiKJOOboEvQQoizCMRHX4Mb7FQp7imkPvFXZrJa1VNNiCGs5KeBHXVSVnI7hSM1gBsM9G6hS5rD-UnCoJpmcwmqmBmUxuQVXrV57e_c3--BzVNT5e1SqscyzMjKEs30UB0ea8FQg0jLWmoSni-BTk7TlMTHWYM0wm5M5szGmlFtuLW0NJQsUI6Mp7YOnk-7Odd8H6_fNZumNXa_11nYH3-AQhlAmEA_o4z901R3cNrhrBCE4EccPffB8gozrvHe2bXZuudHuJyg1xxqbc42BfTixK7_v3BkkCacJJQn9BVtOZVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922159413</pqid></control><display><type>article</type><title>PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM</title><source>SIAM Journals Archive</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><creator>CONNORS, JEFFREY M. ; HOWELL, JASON S. ; LAYTON, WILLIAM J.</creator><creatorcontrib>CONNORS, JEFFREY M. ; HOWELL, JASON S. ; LAYTON, WILLIAM J.</creatorcontrib><description>There have been many numerical simulations but few analytical results of stability and accuracy of algorithms for computational modeling of fluid-fluid and fluid-structure interaction problems, where two domains corresponding to different fluids (ocean-atmosphere) or a fluid and deformable solid (blood flow) are separated by an interface. As a simplified model of the first examples, this report considers two heat equations in $\Omega _{1},\Omega _{2}\subset {\Bbb R}^{2}$ adjoined by an interface $I=\Omega _{1},\Omega _{2}\subset {\Bbb R}$ . The heat equations are coupled by a condition that allows energy to pass back and forth across the interface I while preserving the total global energy of the monolithic, coupled problem. To compute approximate solutions to the above problem only using subdomain solvers, two first-order in time, fully discrete methods are presented. The methods consist of an implicit-explicit approach, in which the action across I is lagged, and a partitioned method based on passing interface values back and forth across I. Stability and convergence results are derived for both schemes. Numerical experiments that support the theoretical results are presented.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/080740891</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Boundary conditions ; Computational fluid dynamics ; Decomposition methods ; Energy ; Error rates ; Fluid flow ; Fluid-structure interaction ; Fluids ; Heat equation ; Heat equations ; Hilbert spaces ; Inner products ; Interfaces ; Iterative methods ; Lagrange multiplier ; Lagrange multipliers ; Mathematical models ; Methods ; Numerical analysis ; Perceptron convergence procedure ; Stability</subject><ispartof>SIAM journal on numerical analysis, 2009-01, Vol.47 (5), p.3526-3549</ispartof><rights>Copyright © 2010 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2009 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33</citedby><cites>FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25735325$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/922159413?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,36061,44363,58238,58471</link.rule.ids></links><search><creatorcontrib>CONNORS, JEFFREY M.</creatorcontrib><creatorcontrib>HOWELL, JASON S.</creatorcontrib><creatorcontrib>LAYTON, WILLIAM J.</creatorcontrib><title>PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM</title><title>SIAM journal on numerical analysis</title><description>There have been many numerical simulations but few analytical results of stability and accuracy of algorithms for computational modeling of fluid-fluid and fluid-structure interaction problems, where two domains corresponding to different fluids (ocean-atmosphere) or a fluid and deformable solid (blood flow) are separated by an interface. As a simplified model of the first examples, this report considers two heat equations in $\Omega _{1},\Omega _{2}\subset {\Bbb R}^{2}$ adjoined by an interface $I=\Omega _{1},\Omega _{2}\subset {\Bbb R}$ . The heat equations are coupled by a condition that allows energy to pass back and forth across the interface I while preserving the total global energy of the monolithic, coupled problem. To compute approximate solutions to the above problem only using subdomain solvers, two first-order in time, fully discrete methods are presented. The methods consist of an implicit-explicit approach, in which the action across I is lagged, and a partitioned method based on passing interface values back and forth across I. Stability and convergence results are derived for both schemes. Numerical experiments that support the theoretical results are presented.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Decomposition methods</subject><subject>Energy</subject><subject>Error rates</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Fluids</subject><subject>Heat equation</subject><subject>Heat equations</subject><subject>Hilbert spaces</subject><subject>Inner products</subject><subject>Interfaces</subject><subject>Iterative methods</subject><subject>Lagrange multiplier</subject><subject>Lagrange multipliers</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Perceptron convergence procedure</subject><subject>Stability</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkF9PwjAUxRujiYg--AFMGp_0Ydo_W7smvowxsMmgC874uJTSJRBg2MKD394SDA8-3dzcX8495wBwj9ELxpS_ohTxGKUCX4AeRiKJOOboEvQQoizCMRHX4Mb7FQp7imkPvFXZrJa1VNNiCGs5KeBHXVSVnI7hSM1gBsM9G6hS5rD-UnCoJpmcwmqmBmUxuQVXrV57e_c3--BzVNT5e1SqscyzMjKEs30UB0ea8FQg0jLWmoSni-BTk7TlMTHWYM0wm5M5szGmlFtuLW0NJQsUI6Mp7YOnk-7Odd8H6_fNZumNXa_11nYH3-AQhlAmEA_o4z901R3cNrhrBCE4EccPffB8gozrvHe2bXZuudHuJyg1xxqbc42BfTixK7_v3BkkCacJJQn9BVtOZVo</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>CONNORS, JEFFREY M.</creator><creator>HOWELL, JASON S.</creator><creator>LAYTON, WILLIAM J.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM</title><author>CONNORS, JEFFREY M. ; HOWELL, JASON S. ; LAYTON, WILLIAM J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Decomposition methods</topic><topic>Energy</topic><topic>Error rates</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Fluids</topic><topic>Heat equation</topic><topic>Heat equations</topic><topic>Hilbert spaces</topic><topic>Inner products</topic><topic>Interfaces</topic><topic>Iterative methods</topic><topic>Lagrange multiplier</topic><topic>Lagrange multipliers</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Perceptron convergence procedure</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CONNORS, JEFFREY M.</creatorcontrib><creatorcontrib>HOWELL, JASON S.</creatorcontrib><creatorcontrib>LAYTON, WILLIAM J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CONNORS, JEFFREY M.</au><au>HOWELL, JASON S.</au><au>LAYTON, WILLIAM J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>47</volume><issue>5</issue><spage>3526</spage><epage>3549</epage><pages>3526-3549</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>There have been many numerical simulations but few analytical results of stability and accuracy of algorithms for computational modeling of fluid-fluid and fluid-structure interaction problems, where two domains corresponding to different fluids (ocean-atmosphere) or a fluid and deformable solid (blood flow) are separated by an interface. As a simplified model of the first examples, this report considers two heat equations in $\Omega _{1},\Omega _{2}\subset {\Bbb R}^{2}$ adjoined by an interface $I=\Omega _{1},\Omega _{2}\subset {\Bbb R}$ . The heat equations are coupled by a condition that allows energy to pass back and forth across the interface I while preserving the total global energy of the monolithic, coupled problem. To compute approximate solutions to the above problem only using subdomain solvers, two first-order in time, fully discrete methods are presented. The methods consist of an implicit-explicit approach, in which the action across I is lagged, and a partitioned method based on passing interface values back and forth across I. Stability and convergence results are derived for both schemes. Numerical experiments that support the theoretical results are presented.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/080740891</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2009-01, Vol.47 (5), p.3526-3549
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_miscellaneous_1038236907
source SIAM Journals Archive; JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global
subjects Algorithms
Approximation
Boundary conditions
Computational fluid dynamics
Decomposition methods
Energy
Error rates
Fluid flow
Fluid-structure interaction
Fluids
Heat equation
Heat equations
Hilbert spaces
Inner products
Interfaces
Iterative methods
Lagrange multiplier
Lagrange multipliers
Mathematical models
Methods
Numerical analysis
Perceptron convergence procedure
Stability
title PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PARTITIONED%20TIME%20STEPPING%20FOR%20A%20PARABOLIC%20TWO%20DOMAIN%20PROBLEM&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=CONNORS,%20JEFFREY%20M.&rft.date=2009-01-01&rft.volume=47&rft.issue=5&rft.spage=3526&rft.epage=3549&rft.pages=3526-3549&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/080740891&rft_dat=%3Cjstor_proqu%3E25735325%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=922159413&rft_id=info:pmid/&rft_jstor_id=25735325&rfr_iscdi=true