Loading…
PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM
There have been many numerical simulations but few analytical results of stability and accuracy of algorithms for computational modeling of fluid-fluid and fluid-structure interaction problems, where two domains corresponding to different fluids (ocean-atmosphere) or a fluid and deformable solid (bl...
Saved in:
Published in: | SIAM journal on numerical analysis 2009-01, Vol.47 (5), p.3526-3549 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33 |
---|---|
cites | cdi_FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33 |
container_end_page | 3549 |
container_issue | 5 |
container_start_page | 3526 |
container_title | SIAM journal on numerical analysis |
container_volume | 47 |
creator | CONNORS, JEFFREY M. HOWELL, JASON S. LAYTON, WILLIAM J. |
description | There have been many numerical simulations but few analytical results of stability and accuracy of algorithms for computational modeling of fluid-fluid and fluid-structure interaction problems, where two domains corresponding to different fluids (ocean-atmosphere) or a fluid and deformable solid (blood flow) are separated by an interface. As a simplified model of the first examples, this report considers two heat equations in $\Omega _{1},\Omega _{2}\subset {\Bbb R}^{2}$ adjoined by an interface $I=\Omega _{1},\Omega _{2}\subset {\Bbb R}$ . The heat equations are coupled by a condition that allows energy to pass back and forth across the interface I while preserving the total global energy of the monolithic, coupled problem. To compute approximate solutions to the above problem only using subdomain solvers, two first-order in time, fully discrete methods are presented. The methods consist of an implicit-explicit approach, in which the action across I is lagged, and a partitioned method based on passing interface values back and forth across I. Stability and convergence results are derived for both schemes. Numerical experiments that support the theoretical results are presented. |
doi_str_mv | 10.1137/080740891 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038236907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25735325</jstor_id><sourcerecordid>25735325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33</originalsourceid><addsrcrecordid>eNpdkF9PwjAUxRujiYg--AFMGp_0Ydo_W7smvowxsMmgC874uJTSJRBg2MKD394SDA8-3dzcX8495wBwj9ELxpS_ohTxGKUCX4AeRiKJOOboEvQQoizCMRHX4Mb7FQp7imkPvFXZrJa1VNNiCGs5KeBHXVSVnI7hSM1gBsM9G6hS5rD-UnCoJpmcwmqmBmUxuQVXrV57e_c3--BzVNT5e1SqscyzMjKEs30UB0ea8FQg0jLWmoSni-BTk7TlMTHWYM0wm5M5szGmlFtuLW0NJQsUI6Mp7YOnk-7Odd8H6_fNZumNXa_11nYH3-AQhlAmEA_o4z901R3cNrhrBCE4EccPffB8gozrvHe2bXZuudHuJyg1xxqbc42BfTixK7_v3BkkCacJJQn9BVtOZVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922159413</pqid></control><display><type>article</type><title>PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM</title><source>SIAM Journals Archive</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>ABI/INFORM Global</source><creator>CONNORS, JEFFREY M. ; HOWELL, JASON S. ; LAYTON, WILLIAM J.</creator><creatorcontrib>CONNORS, JEFFREY M. ; HOWELL, JASON S. ; LAYTON, WILLIAM J.</creatorcontrib><description>There have been many numerical simulations but few analytical results of stability and accuracy of algorithms for computational modeling of fluid-fluid and fluid-structure interaction problems, where two domains corresponding to different fluids (ocean-atmosphere) or a fluid and deformable solid (blood flow) are separated by an interface. As a simplified model of the first examples, this report considers two heat equations in $\Omega _{1},\Omega _{2}\subset {\Bbb R}^{2}$ adjoined by an interface $I=\Omega _{1},\Omega _{2}\subset {\Bbb R}$ . The heat equations are coupled by a condition that allows energy to pass back and forth across the interface I while preserving the total global energy of the monolithic, coupled problem. To compute approximate solutions to the above problem only using subdomain solvers, two first-order in time, fully discrete methods are presented. The methods consist of an implicit-explicit approach, in which the action across I is lagged, and a partitioned method based on passing interface values back and forth across I. Stability and convergence results are derived for both schemes. Numerical experiments that support the theoretical results are presented.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/080740891</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Boundary conditions ; Computational fluid dynamics ; Decomposition methods ; Energy ; Error rates ; Fluid flow ; Fluid-structure interaction ; Fluids ; Heat equation ; Heat equations ; Hilbert spaces ; Inner products ; Interfaces ; Iterative methods ; Lagrange multiplier ; Lagrange multipliers ; Mathematical models ; Methods ; Numerical analysis ; Perceptron convergence procedure ; Stability</subject><ispartof>SIAM journal on numerical analysis, 2009-01, Vol.47 (5), p.3526-3549</ispartof><rights>Copyright © 2010 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2009 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33</citedby><cites>FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25735325$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/922159413?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,36061,44363,58238,58471</link.rule.ids></links><search><creatorcontrib>CONNORS, JEFFREY M.</creatorcontrib><creatorcontrib>HOWELL, JASON S.</creatorcontrib><creatorcontrib>LAYTON, WILLIAM J.</creatorcontrib><title>PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM</title><title>SIAM journal on numerical analysis</title><description>There have been many numerical simulations but few analytical results of stability and accuracy of algorithms for computational modeling of fluid-fluid and fluid-structure interaction problems, where two domains corresponding to different fluids (ocean-atmosphere) or a fluid and deformable solid (blood flow) are separated by an interface. As a simplified model of the first examples, this report considers two heat equations in $\Omega _{1},\Omega _{2}\subset {\Bbb R}^{2}$ adjoined by an interface $I=\Omega _{1},\Omega _{2}\subset {\Bbb R}$ . The heat equations are coupled by a condition that allows energy to pass back and forth across the interface I while preserving the total global energy of the monolithic, coupled problem. To compute approximate solutions to the above problem only using subdomain solvers, two first-order in time, fully discrete methods are presented. The methods consist of an implicit-explicit approach, in which the action across I is lagged, and a partitioned method based on passing interface values back and forth across I. Stability and convergence results are derived for both schemes. Numerical experiments that support the theoretical results are presented.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Decomposition methods</subject><subject>Energy</subject><subject>Error rates</subject><subject>Fluid flow</subject><subject>Fluid-structure interaction</subject><subject>Fluids</subject><subject>Heat equation</subject><subject>Heat equations</subject><subject>Hilbert spaces</subject><subject>Inner products</subject><subject>Interfaces</subject><subject>Iterative methods</subject><subject>Lagrange multiplier</subject><subject>Lagrange multipliers</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Perceptron convergence procedure</subject><subject>Stability</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkF9PwjAUxRujiYg--AFMGp_0Ydo_W7smvowxsMmgC874uJTSJRBg2MKD394SDA8-3dzcX8495wBwj9ELxpS_ohTxGKUCX4AeRiKJOOboEvQQoizCMRHX4Mb7FQp7imkPvFXZrJa1VNNiCGs5KeBHXVSVnI7hSM1gBsM9G6hS5rD-UnCoJpmcwmqmBmUxuQVXrV57e_c3--BzVNT5e1SqscyzMjKEs30UB0ea8FQg0jLWmoSni-BTk7TlMTHWYM0wm5M5szGmlFtuLW0NJQsUI6Mp7YOnk-7Odd8H6_fNZumNXa_11nYH3-AQhlAmEA_o4z901R3cNrhrBCE4EccPffB8gozrvHe2bXZuudHuJyg1xxqbc42BfTixK7_v3BkkCacJJQn9BVtOZVo</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>CONNORS, JEFFREY M.</creator><creator>HOWELL, JASON S.</creator><creator>LAYTON, WILLIAM J.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM</title><author>CONNORS, JEFFREY M. ; HOWELL, JASON S. ; LAYTON, WILLIAM J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Decomposition methods</topic><topic>Energy</topic><topic>Error rates</topic><topic>Fluid flow</topic><topic>Fluid-structure interaction</topic><topic>Fluids</topic><topic>Heat equation</topic><topic>Heat equations</topic><topic>Hilbert spaces</topic><topic>Inner products</topic><topic>Interfaces</topic><topic>Iterative methods</topic><topic>Lagrange multiplier</topic><topic>Lagrange multipliers</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Perceptron convergence procedure</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CONNORS, JEFFREY M.</creatorcontrib><creatorcontrib>HOWELL, JASON S.</creatorcontrib><creatorcontrib>LAYTON, WILLIAM J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CONNORS, JEFFREY M.</au><au>HOWELL, JASON S.</au><au>LAYTON, WILLIAM J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>47</volume><issue>5</issue><spage>3526</spage><epage>3549</epage><pages>3526-3549</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>There have been many numerical simulations but few analytical results of stability and accuracy of algorithms for computational modeling of fluid-fluid and fluid-structure interaction problems, where two domains corresponding to different fluids (ocean-atmosphere) or a fluid and deformable solid (blood flow) are separated by an interface. As a simplified model of the first examples, this report considers two heat equations in $\Omega _{1},\Omega _{2}\subset {\Bbb R}^{2}$ adjoined by an interface $I=\Omega _{1},\Omega _{2}\subset {\Bbb R}$ . The heat equations are coupled by a condition that allows energy to pass back and forth across the interface I while preserving the total global energy of the monolithic, coupled problem. To compute approximate solutions to the above problem only using subdomain solvers, two first-order in time, fully discrete methods are presented. The methods consist of an implicit-explicit approach, in which the action across I is lagged, and a partitioned method based on passing interface values back and forth across I. Stability and convergence results are derived for both schemes. Numerical experiments that support the theoretical results are presented.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/080740891</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2009-01, Vol.47 (5), p.3526-3549 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038236907 |
source | SIAM Journals Archive; JSTOR Archival Journals and Primary Sources Collection; ABI/INFORM Global |
subjects | Algorithms Approximation Boundary conditions Computational fluid dynamics Decomposition methods Energy Error rates Fluid flow Fluid-structure interaction Fluids Heat equation Heat equations Hilbert spaces Inner products Interfaces Iterative methods Lagrange multiplier Lagrange multipliers Mathematical models Methods Numerical analysis Perceptron convergence procedure Stability |
title | PARTITIONED TIME STEPPING FOR A PARABOLIC TWO DOMAIN PROBLEM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A41%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PARTITIONED%20TIME%20STEPPING%20FOR%20A%20PARABOLIC%20TWO%20DOMAIN%20PROBLEM&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=CONNORS,%20JEFFREY%20M.&rft.date=2009-01-01&rft.volume=47&rft.issue=5&rft.spage=3526&rft.epage=3549&rft.pages=3526-3549&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/080740891&rft_dat=%3Cjstor_proqu%3E25735325%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c276t-4740a278902f66fc578d080a28f742cec1a616b2b6e41337e7ee3fc32d040ca33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=922159413&rft_id=info:pmid/&rft_jstor_id=25735325&rfr_iscdi=true |