Loading…

Velocity of pulses in discrete excitable systems

The pulse solution of the spatially discrete excitable FitzHugh–Nagumo (FHN) system is approximately constructed using matched asymptotic expansions in the limit of large time scale separation (as measured by a small dimensionless parameter ϵ). The pulse profile typically consists of slowly varying...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis: real world applications 2012-12, Vol.13 (6), p.2794-2803
Main Authors: Arana, J.I., Bonilla, L.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c288t-e71bc13d2043e52b6b3692c53de67f6e558cf429ab87725e739c9e9fa8bea5573
container_end_page 2803
container_issue 6
container_start_page 2794
container_title Nonlinear analysis: real world applications
container_volume 13
creator Arana, J.I.
Bonilla, L.L.
description The pulse solution of the spatially discrete excitable FitzHugh–Nagumo (FHN) system is approximately constructed using matched asymptotic expansions in the limit of large time scale separation (as measured by a small dimensionless parameter ϵ). The pulse profile typically consists of slowly varying regions of the excitatory variable separated by sharp wave fronts. In the FHN system, the velocity of a pulse is decided by the interaction between its leading and trailing fronts, but the leading order approximation gives only a fair result when compared with direct numerical solutions. A higher order approximation to the wave fronts comprising the FHN pulse is found. Our approximation provides an ϵ-dependent pulse velocity that approximates much better the velocity obtained from numerical solutions. As a result, the reconstruction of the FHN pulse using the improved wave fronts is much closer to the numerically obtained pulse.
doi_str_mv 10.1016/j.nonrwa.2012.03.016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038245157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121812000867</els_id><sourcerecordid>1038245157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-e71bc13d2043e52b6b3692c53de67f6e558cf429ab87725e739c9e9fa8bea5573</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwDxgysiT47Dh2FiRUQUGqxAKsluNcJFdpXOwE6L_HJcxMd7r73tPdI-QaaAEUqtttMfghfJmCUWAF5UUanpAFKKlyIaE-TX1ZqRwYqHNyEeOWUpDAYUHoO_beuvGQ-S7bT33EmLkha120AUfM8DstTdNjFg9xxF28JGedSdjVX12St8eH19VTvnlZP6_uN7llSo05Smgs8JbRkqNgTdXwqmZW8BYr2VUohLJdyWrTKCmZQMlrW2PdGdWgEULyJbmZfffBf0wYR71LN2HfmwH9FDVQrlgp4BctZ9QGH2PATu-D25lwSJA-BqS3eg5IHwPSlOs0TLK7WYbpjU-HQUfrcLDYuoB21K13_xv8ABBFcGE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038245157</pqid></control><display><type>article</type><title>Velocity of pulses in discrete excitable systems</title><source>Elsevier</source><creator>Arana, J.I. ; Bonilla, L.L.</creator><creatorcontrib>Arana, J.I. ; Bonilla, L.L.</creatorcontrib><description>The pulse solution of the spatially discrete excitable FitzHugh–Nagumo (FHN) system is approximately constructed using matched asymptotic expansions in the limit of large time scale separation (as measured by a small dimensionless parameter ϵ). The pulse profile typically consists of slowly varying regions of the excitatory variable separated by sharp wave fronts. In the FHN system, the velocity of a pulse is decided by the interaction between its leading and trailing fronts, but the leading order approximation gives only a fair result when compared with direct numerical solutions. A higher order approximation to the wave fronts comprising the FHN pulse is found. Our approximation provides an ϵ-dependent pulse velocity that approximates much better the velocity obtained from numerical solutions. As a result, the reconstruction of the FHN pulse using the improved wave fronts is much closer to the numerically obtained pulse.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2012.03.016</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Asymptotic expansions ; Dimensional measurements ; Discrete FitzHugh–Nagumo system ; Excitable systems ; Excitation ; Matched asymptotic expansions ; Mathematical analysis ; Mathematical models ; Nonlinear pulses and wave fronts ; Nonlinearity ; Wave fronts</subject><ispartof>Nonlinear analysis: real world applications, 2012-12, Vol.13 (6), p.2794-2803</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c288t-e71bc13d2043e52b6b3692c53de67f6e558cf429ab87725e739c9e9fa8bea5573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Arana, J.I.</creatorcontrib><creatorcontrib>Bonilla, L.L.</creatorcontrib><title>Velocity of pulses in discrete excitable systems</title><title>Nonlinear analysis: real world applications</title><description>The pulse solution of the spatially discrete excitable FitzHugh–Nagumo (FHN) system is approximately constructed using matched asymptotic expansions in the limit of large time scale separation (as measured by a small dimensionless parameter ϵ). The pulse profile typically consists of slowly varying regions of the excitatory variable separated by sharp wave fronts. In the FHN system, the velocity of a pulse is decided by the interaction between its leading and trailing fronts, but the leading order approximation gives only a fair result when compared with direct numerical solutions. A higher order approximation to the wave fronts comprising the FHN pulse is found. Our approximation provides an ϵ-dependent pulse velocity that approximates much better the velocity obtained from numerical solutions. As a result, the reconstruction of the FHN pulse using the improved wave fronts is much closer to the numerically obtained pulse.</description><subject>Approximation</subject><subject>Asymptotic expansions</subject><subject>Dimensional measurements</subject><subject>Discrete FitzHugh–Nagumo system</subject><subject>Excitable systems</subject><subject>Excitation</subject><subject>Matched asymptotic expansions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear pulses and wave fronts</subject><subject>Nonlinearity</subject><subject>Wave fronts</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwDxgysiT47Dh2FiRUQUGqxAKsluNcJFdpXOwE6L_HJcxMd7r73tPdI-QaaAEUqtttMfghfJmCUWAF5UUanpAFKKlyIaE-TX1ZqRwYqHNyEeOWUpDAYUHoO_beuvGQ-S7bT33EmLkha120AUfM8DstTdNjFg9xxF28JGedSdjVX12St8eH19VTvnlZP6_uN7llSo05Smgs8JbRkqNgTdXwqmZW8BYr2VUohLJdyWrTKCmZQMlrW2PdGdWgEULyJbmZfffBf0wYR71LN2HfmwH9FDVQrlgp4BctZ9QGH2PATu-D25lwSJA-BqS3eg5IHwPSlOs0TLK7WYbpjU-HQUfrcLDYuoB21K13_xv8ABBFcGE</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Arana, J.I.</creator><creator>Bonilla, L.L.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201212</creationdate><title>Velocity of pulses in discrete excitable systems</title><author>Arana, J.I. ; Bonilla, L.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-e71bc13d2043e52b6b3692c53de67f6e558cf429ab87725e739c9e9fa8bea5573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Asymptotic expansions</topic><topic>Dimensional measurements</topic><topic>Discrete FitzHugh–Nagumo system</topic><topic>Excitable systems</topic><topic>Excitation</topic><topic>Matched asymptotic expansions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear pulses and wave fronts</topic><topic>Nonlinearity</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arana, J.I.</creatorcontrib><creatorcontrib>Bonilla, L.L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arana, J.I.</au><au>Bonilla, L.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velocity of pulses in discrete excitable systems</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2012-12</date><risdate>2012</risdate><volume>13</volume><issue>6</issue><spage>2794</spage><epage>2803</epage><pages>2794-2803</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>The pulse solution of the spatially discrete excitable FitzHugh–Nagumo (FHN) system is approximately constructed using matched asymptotic expansions in the limit of large time scale separation (as measured by a small dimensionless parameter ϵ). The pulse profile typically consists of slowly varying regions of the excitatory variable separated by sharp wave fronts. In the FHN system, the velocity of a pulse is decided by the interaction between its leading and trailing fronts, but the leading order approximation gives only a fair result when compared with direct numerical solutions. A higher order approximation to the wave fronts comprising the FHN pulse is found. Our approximation provides an ϵ-dependent pulse velocity that approximates much better the velocity obtained from numerical solutions. As a result, the reconstruction of the FHN pulse using the improved wave fronts is much closer to the numerically obtained pulse.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2012.03.016</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2012-12, Vol.13 (6), p.2794-2803
issn 1468-1218
1878-5719
language eng
recordid cdi_proquest_miscellaneous_1038245157
source Elsevier
subjects Approximation
Asymptotic expansions
Dimensional measurements
Discrete FitzHugh–Nagumo system
Excitable systems
Excitation
Matched asymptotic expansions
Mathematical analysis
Mathematical models
Nonlinear pulses and wave fronts
Nonlinearity
Wave fronts
title Velocity of pulses in discrete excitable systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velocity%20of%20pulses%20in%20discrete%20excitable%20systems&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Arana,%20J.I.&rft.date=2012-12&rft.volume=13&rft.issue=6&rft.spage=2794&rft.epage=2803&rft.pages=2794-2803&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2012.03.016&rft_dat=%3Cproquest_cross%3E1038245157%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-e71bc13d2043e52b6b3692c53de67f6e558cf429ab87725e739c9e9fa8bea5573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038245157&rft_id=info:pmid/&rfr_iscdi=true