Loading…

MODIFIED COMBINED FIELD INTEGRAL EQUATIONS FOR ELECTROMAGNETIC SCATTERING

The boundary integral formulation of exterior boundary value problems for the Maxwell system may not be equivalent to the original uniquely solvable problem if the wave number corresponds to an eigenvalue of an associated interior eigenvalue problem. To avoid these spurious modes one may use a combi...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on numerical analysis 2009-01, Vol.47 (2), p.1149-1167
Main Authors: STEINBACH, O., WINDISCH, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c311t-379fa23da138be3a4ab7203669bb197c22707a7d5177304d3eebfce5e33d9bfe3
cites cdi_FETCH-LOGICAL-c311t-379fa23da138be3a4ab7203669bb197c22707a7d5177304d3eebfce5e33d9bfe3
container_end_page 1167
container_issue 2
container_start_page 1149
container_title SIAM journal on numerical analysis
container_volume 47
creator STEINBACH, O.
WINDISCH, M.
description The boundary integral formulation of exterior boundary value problems for the Maxwell system may not be equivalent to the original uniquely solvable problem if the wave number corresponds to an eigenvalue of an associated interior eigenvalue problem. To avoid these spurious modes one may use a combined boundary integral approach. To analyze the resulting boundary integral equations in the energy function spaces suitable regularizations have to be introduced. Here we formulate and analyze a modified boundary integral equation which is based on the use of standard boundary integral operators only. A first numerical example shows the applicability of the proposed approach.
doi_str_mv 10.1137/070698063
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038247147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25663165</jstor_id><sourcerecordid>25663165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-379fa23da138be3a4ab7203669bb197c22707a7d5177304d3eebfce5e33d9bfe3</originalsourceid><addsrcrecordid>eNpdkMFLwzAYxYMoOKcH_wCheNJDNV_SJs2xdlkNdC123bmkbQob2zqb7eB_b2TiwdP3Hvx4vO8hdA_4BYDyV8wxExFm9AJNAIvQ58DxJZpgTJkPARHX6MbaDXY-AjpBalHM1FzJmZcUizeVO-FcNvNUXsm0jDNPfqziShX50psXpSczmVRlsYjTXFYq8ZZJXFWyVHl6i656vbXm7vdO0Wouq-Tdz4pUJXHmtxTg6FMuek1op4FGjaE60A0nrhwTTQOCt4RwzDXvQuCc4qCjxjR9a0JDaSea3tApejrnHsbh82Tssd6tbWu2W703w8nW4D4jAYeAO_TxH7oZTuPetasFIcCA8MhBz2eoHQdrR9PXh3G90-OXS6p_Nq3_NnXsw5nd2OMw_oEkZIwCC-k3IO9p3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922161278</pqid></control><display><type>article</type><title>MODIFIED COMBINED FIELD INTEGRAL EQUATIONS FOR ELECTROMAGNETIC SCATTERING</title><source>ABI/INFORM Global (ProQuest)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>SIAM journals archive (Locus)</source><creator>STEINBACH, O. ; WINDISCH, M.</creator><creatorcontrib>STEINBACH, O. ; WINDISCH, M.</creatorcontrib><description>The boundary integral formulation of exterior boundary value problems for the Maxwell system may not be equivalent to the original uniquely solvable problem if the wave number corresponds to an eigenvalue of an associated interior eigenvalue problem. To avoid these spurious modes one may use a combined boundary integral approach. To analyze the resulting boundary integral equations in the energy function spaces suitable regularizations have to be introduced. Here we formulate and analyze a modified boundary integral equation which is based on the use of standard boundary integral operators only. A first numerical example shows the applicability of the proposed approach.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/070698063</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Acoustics ; Boundaries ; Boundary element method ; Boundary value problems ; Computational mathematics ; Curl ; Differential equations ; Eigenvalues ; Electromagnetic scattering ; Electromagnetism ; Equivalence ; Integral equations ; Integrals ; Mathematical analysis ; Mathematical functions ; Maxwell equations ; Radiation ; Solvability ; Wavelengths</subject><ispartof>SIAM journal on numerical analysis, 2009-01, Vol.47 (2), p.1149-1167</ispartof><rights>Copyright ©2010 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 2009 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-379fa23da138be3a4ab7203669bb197c22707a7d5177304d3eebfce5e33d9bfe3</citedby><cites>FETCH-LOGICAL-c311t-379fa23da138be3a4ab7203669bb197c22707a7d5177304d3eebfce5e33d9bfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25663165$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/922161278?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3185,11688,27924,27925,36060,36061,44363,58238,58471</link.rule.ids></links><search><creatorcontrib>STEINBACH, O.</creatorcontrib><creatorcontrib>WINDISCH, M.</creatorcontrib><title>MODIFIED COMBINED FIELD INTEGRAL EQUATIONS FOR ELECTROMAGNETIC SCATTERING</title><title>SIAM journal on numerical analysis</title><description>The boundary integral formulation of exterior boundary value problems for the Maxwell system may not be equivalent to the original uniquely solvable problem if the wave number corresponds to an eigenvalue of an associated interior eigenvalue problem. To avoid these spurious modes one may use a combined boundary integral approach. To analyze the resulting boundary integral equations in the energy function spaces suitable regularizations have to be introduced. Here we formulate and analyze a modified boundary integral equation which is based on the use of standard boundary integral operators only. A first numerical example shows the applicability of the proposed approach.</description><subject>Acoustics</subject><subject>Boundaries</subject><subject>Boundary element method</subject><subject>Boundary value problems</subject><subject>Computational mathematics</subject><subject>Curl</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetism</subject><subject>Equivalence</subject><subject>Integral equations</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Maxwell equations</subject><subject>Radiation</subject><subject>Solvability</subject><subject>Wavelengths</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkMFLwzAYxYMoOKcH_wCheNJDNV_SJs2xdlkNdC123bmkbQob2zqb7eB_b2TiwdP3Hvx4vO8hdA_4BYDyV8wxExFm9AJNAIvQ58DxJZpgTJkPARHX6MbaDXY-AjpBalHM1FzJmZcUizeVO-FcNvNUXsm0jDNPfqziShX50psXpSczmVRlsYjTXFYq8ZZJXFWyVHl6i656vbXm7vdO0Wouq-Tdz4pUJXHmtxTg6FMuek1op4FGjaE60A0nrhwTTQOCt4RwzDXvQuCc4qCjxjR9a0JDaSea3tApejrnHsbh82Tssd6tbWu2W703w8nW4D4jAYeAO_TxH7oZTuPetasFIcCA8MhBz2eoHQdrR9PXh3G90-OXS6p_Nq3_NnXsw5nd2OMw_oEkZIwCC-k3IO9p3A</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>STEINBACH, O.</creator><creator>WINDISCH, M.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090101</creationdate><title>MODIFIED COMBINED FIELD INTEGRAL EQUATIONS FOR ELECTROMAGNETIC SCATTERING</title><author>STEINBACH, O. ; WINDISCH, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-379fa23da138be3a4ab7203669bb197c22707a7d5177304d3eebfce5e33d9bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustics</topic><topic>Boundaries</topic><topic>Boundary element method</topic><topic>Boundary value problems</topic><topic>Computational mathematics</topic><topic>Curl</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetism</topic><topic>Equivalence</topic><topic>Integral equations</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Maxwell equations</topic><topic>Radiation</topic><topic>Solvability</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>STEINBACH, O.</creatorcontrib><creatorcontrib>WINDISCH, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>ProQuest Military Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>STEINBACH, O.</au><au>WINDISCH, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODIFIED COMBINED FIELD INTEGRAL EQUATIONS FOR ELECTROMAGNETIC SCATTERING</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>47</volume><issue>2</issue><spage>1149</spage><epage>1167</epage><pages>1149-1167</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>The boundary integral formulation of exterior boundary value problems for the Maxwell system may not be equivalent to the original uniquely solvable problem if the wave number corresponds to an eigenvalue of an associated interior eigenvalue problem. To avoid these spurious modes one may use a combined boundary integral approach. To analyze the resulting boundary integral equations in the energy function spaces suitable regularizations have to be introduced. Here we formulate and analyze a modified boundary integral equation which is based on the use of standard boundary integral operators only. A first numerical example shows the applicability of the proposed approach.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/070698063</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2009-01, Vol.47 (2), p.1149-1167
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_miscellaneous_1038247147
source ABI/INFORM Global (ProQuest); JSTOR Archival Journals and Primary Sources Collection; SIAM journals archive (Locus)
subjects Acoustics
Boundaries
Boundary element method
Boundary value problems
Computational mathematics
Curl
Differential equations
Eigenvalues
Electromagnetic scattering
Electromagnetism
Equivalence
Integral equations
Integrals
Mathematical analysis
Mathematical functions
Maxwell equations
Radiation
Solvability
Wavelengths
title MODIFIED COMBINED FIELD INTEGRAL EQUATIONS FOR ELECTROMAGNETIC SCATTERING
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A11%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODIFIED%20COMBINED%20FIELD%20INTEGRAL%20EQUATIONS%20FOR%20ELECTROMAGNETIC%20SCATTERING&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=STEINBACH,%20O.&rft.date=2009-01-01&rft.volume=47&rft.issue=2&rft.spage=1149&rft.epage=1167&rft.pages=1149-1167&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/070698063&rft_dat=%3Cjstor_proqu%3E25663165%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-379fa23da138be3a4ab7203669bb197c22707a7d5177304d3eebfce5e33d9bfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=922161278&rft_id=info:pmid/&rft_jstor_id=25663165&rfr_iscdi=true