Loading…

Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters

The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differenti...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Condensed matter, 2012-08, Vol.407 (16), p.3305-3307
Main Authors: Rotstein Habarnau, Yamila, Bergamasco, Pablo, Sacanell, Joaquin, Leyva, Gabriela, Albornoz, Cecilia, Quintero, Mariano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633
cites cdi_FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633
container_end_page 3307
container_issue 16
container_start_page 3305
container_title Physica. B, Condensed matter
container_volume 407
creator Rotstein Habarnau, Yamila
Bergamasco, Pablo
Sacanell, Joaquin
Leyva, Gabriela
Albornoz, Cecilia
Quintero, Mariano
description The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T
doi_str_mv 10.1016/j.physb.2011.12.094
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038247245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452611012877</els_id><sourcerecordid>1038247245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOI5-gZtuBDetebTJVHAhPgcG3Og65HHrZGibmnTE-XtTR1yazQ2Xc18HoXOCC4IJv9oUw3oXdUExIQWhBa7LAzQjC8FySlh1iGa4piQvK8qP0UmMG5weEWSGwr0LYMbM6wjhU43O95lvsk699zB6o1ofnMmgaSZI7zLr0jdAPzrVZuMaQpei6lW7iy5eZ8u-abfQG5iawNcAwXUJTsyggupghBBP0VGj2ghnv3GO3h4fXu-e89XL0_LudpUbxvmYQ1mXiluoAATTVC8qEMCFVVjZkmtdlQJSzmCoDReaW2I1sYaxutEJYGyOLvd9h-A_thBH2blooG1VD34bJcFsQUtByyqhbI-a4GMM0MghLa7CLkFyMiw38sewnAxLQmUynKoufgeomEw1QfXGxb9SynGFBSaJu9lzkK79dBBkNG6SZH_cS-vdv3O-AXwtliU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038247245</pqid></control><display><type>article</type><title>Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters</title><source>ScienceDirect Freedom Collection</source><creator>Rotstein Habarnau, Yamila ; Bergamasco, Pablo ; Sacanell, Joaquin ; Leyva, Gabriela ; Albornoz, Cecilia ; Quintero, Mariano</creator><creatorcontrib>Rotstein Habarnau, Yamila ; Bergamasco, Pablo ; Sacanell, Joaquin ; Leyva, Gabriela ; Albornoz, Cecilia ; Quintero, Mariano</creatorcontrib><description>The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T&lt;200K). We obtain ΔT vs H curves, and analyze how the effect varies by changing the rate of the magnetic field ramp. Our results show that the intensity of the effect increases with the magnetic field change rate. We also have obtained the effective heat capacity of the system without the sample by performing calorimetric measurements using a pulse heat method, fitting the temperature change with a two tau description. With this analysis, we are able to describe the influence of the environment and subtract it to calculate the adiabatic temperature change of the sample.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2011.12.094</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adiabatic flow ; Condensed matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Differential thermal analysis ; Entropy ; Exact sciences and technology ; Information technology ; Magnetic fields ; Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.) ; Magnetic properties and materials ; Magnetically ordered materials: other intrinsic properties ; Magnetocaloric effect, magnetic cooling ; Mathematical analysis ; Nonmetallic ferromagnetic materials ; Physics ; Ramps ; Studies of specific magnetic materials ; Thermal expansion; thermomechanical effects and density ; Thermal properties of condensed matter ; Thermal properties of crystalline solids</subject><ispartof>Physica. B, Condensed matter, 2012-08, Vol.407 (16), p.3305-3307</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633</citedby><cites>FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26050701$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rotstein Habarnau, Yamila</creatorcontrib><creatorcontrib>Bergamasco, Pablo</creatorcontrib><creatorcontrib>Sacanell, Joaquin</creatorcontrib><creatorcontrib>Leyva, Gabriela</creatorcontrib><creatorcontrib>Albornoz, Cecilia</creatorcontrib><creatorcontrib>Quintero, Mariano</creatorcontrib><title>Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters</title><title>Physica. B, Condensed matter</title><description>The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T&lt;200K). We obtain ΔT vs H curves, and analyze how the effect varies by changing the rate of the magnetic field ramp. Our results show that the intensity of the effect increases with the magnetic field change rate. We also have obtained the effective heat capacity of the system without the sample by performing calorimetric measurements using a pulse heat method, fitting the temperature change with a two tau description. With this analysis, we are able to describe the influence of the environment and subtract it to calculate the adiabatic temperature change of the sample.</description><subject>Adiabatic flow</subject><subject>Condensed matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Differential thermal analysis</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Information technology</subject><subject>Magnetic fields</subject><subject>Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)</subject><subject>Magnetic properties and materials</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Magnetocaloric effect, magnetic cooling</subject><subject>Mathematical analysis</subject><subject>Nonmetallic ferromagnetic materials</subject><subject>Physics</subject><subject>Ramps</subject><subject>Studies of specific magnetic materials</subject><subject>Thermal expansion; thermomechanical effects and density</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of crystalline solids</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUQIMoOI5-gZtuBDetebTJVHAhPgcG3Og65HHrZGibmnTE-XtTR1yazQ2Xc18HoXOCC4IJv9oUw3oXdUExIQWhBa7LAzQjC8FySlh1iGa4piQvK8qP0UmMG5weEWSGwr0LYMbM6wjhU43O95lvsk699zB6o1ofnMmgaSZI7zLr0jdAPzrVZuMaQpei6lW7iy5eZ8u-abfQG5iawNcAwXUJTsyggupghBBP0VGj2ghnv3GO3h4fXu-e89XL0_LudpUbxvmYQ1mXiluoAATTVC8qEMCFVVjZkmtdlQJSzmCoDReaW2I1sYaxutEJYGyOLvd9h-A_thBH2blooG1VD34bJcFsQUtByyqhbI-a4GMM0MghLa7CLkFyMiw38sewnAxLQmUynKoufgeomEw1QfXGxb9SynGFBSaJu9lzkK79dBBkNG6SZH_cS-vdv3O-AXwtliU</recordid><startdate>20120815</startdate><enddate>20120815</enddate><creator>Rotstein Habarnau, Yamila</creator><creator>Bergamasco, Pablo</creator><creator>Sacanell, Joaquin</creator><creator>Leyva, Gabriela</creator><creator>Albornoz, Cecilia</creator><creator>Quintero, Mariano</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120815</creationdate><title>Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters</title><author>Rotstein Habarnau, Yamila ; Bergamasco, Pablo ; Sacanell, Joaquin ; Leyva, Gabriela ; Albornoz, Cecilia ; Quintero, Mariano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adiabatic flow</topic><topic>Condensed matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Differential thermal analysis</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Information technology</topic><topic>Magnetic fields</topic><topic>Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)</topic><topic>Magnetic properties and materials</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Magnetocaloric effect, magnetic cooling</topic><topic>Mathematical analysis</topic><topic>Nonmetallic ferromagnetic materials</topic><topic>Physics</topic><topic>Ramps</topic><topic>Studies of specific magnetic materials</topic><topic>Thermal expansion; thermomechanical effects and density</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of crystalline solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotstein Habarnau, Yamila</creatorcontrib><creatorcontrib>Bergamasco, Pablo</creatorcontrib><creatorcontrib>Sacanell, Joaquin</creatorcontrib><creatorcontrib>Leyva, Gabriela</creatorcontrib><creatorcontrib>Albornoz, Cecilia</creatorcontrib><creatorcontrib>Quintero, Mariano</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotstein Habarnau, Yamila</au><au>Bergamasco, Pablo</au><au>Sacanell, Joaquin</au><au>Leyva, Gabriela</au><au>Albornoz, Cecilia</au><au>Quintero, Mariano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2012-08-15</date><risdate>2012</risdate><volume>407</volume><issue>16</issue><spage>3305</spage><epage>3307</epage><pages>3305-3307</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T&lt;200K). We obtain ΔT vs H curves, and analyze how the effect varies by changing the rate of the magnetic field ramp. Our results show that the intensity of the effect increases with the magnetic field change rate. We also have obtained the effective heat capacity of the system without the sample by performing calorimetric measurements using a pulse heat method, fitting the temperature change with a two tau description. With this analysis, we are able to describe the influence of the environment and subtract it to calculate the adiabatic temperature change of the sample.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2011.12.094</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2012-08, Vol.407 (16), p.3305-3307
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_miscellaneous_1038247245
source ScienceDirect Freedom Collection
subjects Adiabatic flow
Condensed matter
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Differential thermal analysis
Entropy
Exact sciences and technology
Information technology
Magnetic fields
Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)
Magnetic properties and materials
Magnetically ordered materials: other intrinsic properties
Magnetocaloric effect, magnetic cooling
Mathematical analysis
Nonmetallic ferromagnetic materials
Physics
Ramps
Studies of specific magnetic materials
Thermal expansion
thermomechanical effects and density
Thermal properties of condensed matter
Thermal properties of crystalline solids
title Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observation%20of%20magnetocaloric%20effect%20by%20differential%20thermal%20analysis:%20Influence%20of%20experimental%20parameters&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Rotstein%20Habarnau,%20Yamila&rft.date=2012-08-15&rft.volume=407&rft.issue=16&rft.spage=3305&rft.epage=3307&rft.pages=3305-3307&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2011.12.094&rft_dat=%3Cproquest_cross%3E1038247245%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038247245&rft_id=info:pmid/&rfr_iscdi=true