Loading…
Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters
The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differenti...
Saved in:
Published in: | Physica. B, Condensed matter Condensed matter, 2012-08, Vol.407 (16), p.3305-3307 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633 |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633 |
container_end_page | 3307 |
container_issue | 16 |
container_start_page | 3305 |
container_title | Physica. B, Condensed matter |
container_volume | 407 |
creator | Rotstein Habarnau, Yamila Bergamasco, Pablo Sacanell, Joaquin Leyva, Gabriela Albornoz, Cecilia Quintero, Mariano |
description | The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T |
doi_str_mv | 10.1016/j.physb.2011.12.094 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038247245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452611012877</els_id><sourcerecordid>1038247245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOI5-gZtuBDetebTJVHAhPgcG3Og65HHrZGibmnTE-XtTR1yazQ2Xc18HoXOCC4IJv9oUw3oXdUExIQWhBa7LAzQjC8FySlh1iGa4piQvK8qP0UmMG5weEWSGwr0LYMbM6wjhU43O95lvsk699zB6o1ofnMmgaSZI7zLr0jdAPzrVZuMaQpei6lW7iy5eZ8u-abfQG5iawNcAwXUJTsyggupghBBP0VGj2ghnv3GO3h4fXu-e89XL0_LudpUbxvmYQ1mXiluoAATTVC8qEMCFVVjZkmtdlQJSzmCoDReaW2I1sYaxutEJYGyOLvd9h-A_thBH2blooG1VD34bJcFsQUtByyqhbI-a4GMM0MghLa7CLkFyMiw38sewnAxLQmUynKoufgeomEw1QfXGxb9SynGFBSaJu9lzkK79dBBkNG6SZH_cS-vdv3O-AXwtliU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038247245</pqid></control><display><type>article</type><title>Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters</title><source>ScienceDirect Freedom Collection</source><creator>Rotstein Habarnau, Yamila ; Bergamasco, Pablo ; Sacanell, Joaquin ; Leyva, Gabriela ; Albornoz, Cecilia ; Quintero, Mariano</creator><creatorcontrib>Rotstein Habarnau, Yamila ; Bergamasco, Pablo ; Sacanell, Joaquin ; Leyva, Gabriela ; Albornoz, Cecilia ; Quintero, Mariano</creatorcontrib><description>The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T<200K). We obtain ΔT vs H curves, and analyze how the effect varies by changing the rate of the magnetic field ramp. Our results show that the intensity of the effect increases with the magnetic field change rate. We also have obtained the effective heat capacity of the system without the sample by performing calorimetric measurements using a pulse heat method, fitting the temperature change with a two tau description. With this analysis, we are able to describe the influence of the environment and subtract it to calculate the adiabatic temperature change of the sample.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2011.12.094</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adiabatic flow ; Condensed matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Differential thermal analysis ; Entropy ; Exact sciences and technology ; Information technology ; Magnetic fields ; Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.) ; Magnetic properties and materials ; Magnetically ordered materials: other intrinsic properties ; Magnetocaloric effect, magnetic cooling ; Mathematical analysis ; Nonmetallic ferromagnetic materials ; Physics ; Ramps ; Studies of specific magnetic materials ; Thermal expansion; thermomechanical effects and density ; Thermal properties of condensed matter ; Thermal properties of crystalline solids</subject><ispartof>Physica. B, Condensed matter, 2012-08, Vol.407 (16), p.3305-3307</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633</citedby><cites>FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26050701$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rotstein Habarnau, Yamila</creatorcontrib><creatorcontrib>Bergamasco, Pablo</creatorcontrib><creatorcontrib>Sacanell, Joaquin</creatorcontrib><creatorcontrib>Leyva, Gabriela</creatorcontrib><creatorcontrib>Albornoz, Cecilia</creatorcontrib><creatorcontrib>Quintero, Mariano</creatorcontrib><title>Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters</title><title>Physica. B, Condensed matter</title><description>The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T<200K). We obtain ΔT vs H curves, and analyze how the effect varies by changing the rate of the magnetic field ramp. Our results show that the intensity of the effect increases with the magnetic field change rate. We also have obtained the effective heat capacity of the system without the sample by performing calorimetric measurements using a pulse heat method, fitting the temperature change with a two tau description. With this analysis, we are able to describe the influence of the environment and subtract it to calculate the adiabatic temperature change of the sample.</description><subject>Adiabatic flow</subject><subject>Condensed matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Differential thermal analysis</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>Information technology</subject><subject>Magnetic fields</subject><subject>Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)</subject><subject>Magnetic properties and materials</subject><subject>Magnetically ordered materials: other intrinsic properties</subject><subject>Magnetocaloric effect, magnetic cooling</subject><subject>Mathematical analysis</subject><subject>Nonmetallic ferromagnetic materials</subject><subject>Physics</subject><subject>Ramps</subject><subject>Studies of specific magnetic materials</subject><subject>Thermal expansion; thermomechanical effects and density</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of crystalline solids</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUQIMoOI5-gZtuBDetebTJVHAhPgcG3Og65HHrZGibmnTE-XtTR1yazQ2Xc18HoXOCC4IJv9oUw3oXdUExIQWhBa7LAzQjC8FySlh1iGa4piQvK8qP0UmMG5weEWSGwr0LYMbM6wjhU43O95lvsk699zB6o1ofnMmgaSZI7zLr0jdAPzrVZuMaQpei6lW7iy5eZ8u-abfQG5iawNcAwXUJTsyggupghBBP0VGj2ghnv3GO3h4fXu-e89XL0_LudpUbxvmYQ1mXiluoAATTVC8qEMCFVVjZkmtdlQJSzmCoDReaW2I1sYaxutEJYGyOLvd9h-A_thBH2blooG1VD34bJcFsQUtByyqhbI-a4GMM0MghLa7CLkFyMiw38sewnAxLQmUynKoufgeomEw1QfXGxb9SynGFBSaJu9lzkK79dBBkNG6SZH_cS-vdv3O-AXwtliU</recordid><startdate>20120815</startdate><enddate>20120815</enddate><creator>Rotstein Habarnau, Yamila</creator><creator>Bergamasco, Pablo</creator><creator>Sacanell, Joaquin</creator><creator>Leyva, Gabriela</creator><creator>Albornoz, Cecilia</creator><creator>Quintero, Mariano</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120815</creationdate><title>Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters</title><author>Rotstein Habarnau, Yamila ; Bergamasco, Pablo ; Sacanell, Joaquin ; Leyva, Gabriela ; Albornoz, Cecilia ; Quintero, Mariano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adiabatic flow</topic><topic>Condensed matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Differential thermal analysis</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>Information technology</topic><topic>Magnetic fields</topic><topic>Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)</topic><topic>Magnetic properties and materials</topic><topic>Magnetically ordered materials: other intrinsic properties</topic><topic>Magnetocaloric effect, magnetic cooling</topic><topic>Mathematical analysis</topic><topic>Nonmetallic ferromagnetic materials</topic><topic>Physics</topic><topic>Ramps</topic><topic>Studies of specific magnetic materials</topic><topic>Thermal expansion; thermomechanical effects and density</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of crystalline solids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotstein Habarnau, Yamila</creatorcontrib><creatorcontrib>Bergamasco, Pablo</creatorcontrib><creatorcontrib>Sacanell, Joaquin</creatorcontrib><creatorcontrib>Leyva, Gabriela</creatorcontrib><creatorcontrib>Albornoz, Cecilia</creatorcontrib><creatorcontrib>Quintero, Mariano</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotstein Habarnau, Yamila</au><au>Bergamasco, Pablo</au><au>Sacanell, Joaquin</au><au>Leyva, Gabriela</au><au>Albornoz, Cecilia</au><au>Quintero, Mariano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2012-08-15</date><risdate>2012</risdate><volume>407</volume><issue>16</issue><spage>3305</spage><epage>3307</epage><pages>3305-3307</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>The magnetocaloric effect is the isothermal change of magnetic entropy and the adiabatic temperature change induced in a magnetic material when an external magnetic field is applied. In this work, we present an experimental setup to study this effect in metamagnetic transitions, using the differential thermal analysis technique, which consists in measuring simultaneously the temperatures of the sample of interest and a reference one while an external magnetic field ramp is applied. We have tested our system to measure the magnetocaloric effect in La0.305Pr0.32Ca0.375MnO3, which presents phase separation effects at low temperatures (T<200K). We obtain ΔT vs H curves, and analyze how the effect varies by changing the rate of the magnetic field ramp. Our results show that the intensity of the effect increases with the magnetic field change rate. We also have obtained the effective heat capacity of the system without the sample by performing calorimetric measurements using a pulse heat method, fitting the temperature change with a two tau description. With this analysis, we are able to describe the influence of the environment and subtract it to calculate the adiabatic temperature change of the sample.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2011.12.094</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2012-08, Vol.407 (16), p.3305-3307 |
issn | 0921-4526 1873-2135 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038247245 |
source | ScienceDirect Freedom Collection |
subjects | Adiabatic flow Condensed matter Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Differential thermal analysis Entropy Exact sciences and technology Information technology Magnetic fields Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.) Magnetic properties and materials Magnetically ordered materials: other intrinsic properties Magnetocaloric effect, magnetic cooling Mathematical analysis Nonmetallic ferromagnetic materials Physics Ramps Studies of specific magnetic materials Thermal expansion thermomechanical effects and density Thermal properties of condensed matter Thermal properties of crystalline solids |
title | Direct observation of magnetocaloric effect by differential thermal analysis: Influence of experimental parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observation%20of%20magnetocaloric%20effect%20by%20differential%20thermal%20analysis:%20Influence%20of%20experimental%20parameters&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Rotstein%20Habarnau,%20Yamila&rft.date=2012-08-15&rft.volume=407&rft.issue=16&rft.spage=3305&rft.epage=3307&rft.pages=3305-3307&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2011.12.094&rft_dat=%3Cproquest_cross%3E1038247245%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-e494a6de5ee73b2b85e7e67da0ad46bb547e85ec0e9c67b6d1db1dc339fbd4633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038247245&rft_id=info:pmid/&rfr_iscdi=true |