Loading…

An in-depth simulation of EnMAP acquisition geometry

The future hyperspectral satellite EnMAP (Environmental Mapping and Analysis Program) uses two separate sensors for the acquisition of VNIR and SWIR imagery. Due to their geometric configuration, the SWIR and VNIR instruments map the same positions on the ground with a time delay of 88ms. Coupled wi...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS journal of photogrammetry and remote sensing 2012-06, Vol.70, p.99-106
Main Authors: Schwind, P., Müller, R., Palubinskas, G., Storch, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The future hyperspectral satellite EnMAP (Environmental Mapping and Analysis Program) uses two separate sensors for the acquisition of VNIR and SWIR imagery. Due to their geometric configuration, the SWIR and VNIR instruments map the same positions on the ground with a time delay of 88ms. Coupled with attitude controller inaccuracies this leads to an estimated co-registration error between SWIR and VNIR higher than the maximum 0.2 pixels designated in the specifications of EnMAP imagery. It is assumed that, by approximating or interpolating the real attitude and geometrically correcting the images, this co-registration error can be significantly reduced. To validate these assumptions, a geometric simulator was developed at the German Aerospace Center DLR which is responsible for the development of the ground segment of EnMAP. The implemented simulator, together with an evaluation of the absolute and relative accuracy, performed using this simulator, are presented in this article. The obtained results demonstrate that the desired co-registration accuracy between SWIR and VNIR imagery can be achieved by using Spline or Chebyshev approximation for the attitude reconstruction but not by using Lagrange interpolation.
ISSN:0924-2716
1872-8235
DOI:10.1016/j.isprsjprs.2012.03.012