Loading…

The Estimation of Localized Corrosion Behavior of Ni-Based Dental Alloys Using Electrochemical Techniques

The aim of this study is to investigate the electrochemical behavior of the five non-precious Ni-based dental casting alloys in acidified artificial saliva. For comparison, nickel was also investigated. In order to study the localized corrosion resistance, the cyclic potentiodynamic polarization (CC...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials engineering and performance 2012-07, Vol.21 (7), p.1431-1439
Main Authors: Mareci, Daniel, Chelariu, Romeu, Iacoban, Sorin, Munteanu, Corneliu, Bolat, Georgiana, Sutiman, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study is to investigate the electrochemical behavior of the five non-precious Ni-based dental casting alloys in acidified artificial saliva. For comparison, nickel was also investigated. In order to study the localized corrosion resistance, the cyclic potentiodynamic polarization (CCP) and electrochemical impedance spectroscopy were performed. Scanning electron microscopy (SEM) observations were made after the CCP tests. The Ni-Cr alloys with chromium (14-18%) contents were susceptible to localized corrosion. The Ni-Cr-Mo alloy with contents of chromium (≈13%) and molybdenum (9%) presents a dangerous breakdown, but have a zero corrosion potential so that the difference between them is around 650 mV. The Ni-Cr-Mo alloys with higher chromium (22-25%) and molybdenum (9-11%) contents had a much larger passive range in the polarization curve and were immune to pitting corrosion. Pitting resistance equivalent (PRE) of about ≈54 could provide the Ni-based alloy with a good pitting corrosion resistance.
ISSN:1059-9495
1544-1024
DOI:10.1007/s11665-011-0014-1