Loading…

Optical properties and sensing applications of lithium iron phosphate thin films

A composite optical waveguide sensor, consisting of lithium iron phosphate (LiFePO4, LFP) as the sensing material, was constructed and utilized for the detection of volatile organic compound gases. Nano-LFP powder was prepared via the hydrothermal method and was subsequently utilized in a dip-coatin...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2012-07, Vol.520 (19), p.6250-6255
Main Authors: Nizamidin, Patima, Yimit, Abliz, De Wang, Ji, Itoh, Kiminori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-8db37156f09085958df861e6a7abd797797e0a64aa8259333c3936aa9f9922613
cites cdi_FETCH-LOGICAL-c426t-8db37156f09085958df861e6a7abd797797e0a64aa8259333c3936aa9f9922613
container_end_page 6255
container_issue 19
container_start_page 6250
container_title Thin solid films
container_volume 520
creator Nizamidin, Patima
Yimit, Abliz
De Wang, Ji
Itoh, Kiminori
description A composite optical waveguide sensor, consisting of lithium iron phosphate (LiFePO4, LFP) as the sensing material, was constructed and utilized for the detection of volatile organic compound gases. Nano-LFP powder was prepared via the hydrothermal method and was subsequently utilized in a dip-coating procedure for the fabrication of LFP thin films. The effect of heat treating temperature on the refractive index of the thin films was studied. A glass optical waveguide gas sensor was fabricated by coating an LFP thin film on the surface of single-mode tin-diffused glass optical waveguide. The sensor was found to exhibit a linear response to xylene in the range of 50–1000ppm, with response times of less than 5s. ► LiFePO4 was selected as sensing material for xylene detection. ► Refractive index of LiFePO4 thin films increases with annealing temperature from 120 to 450°C. ► LiFePO4 optical waveguide sensor easily detects 50ppm of xylene gas with response
doi_str_mv 10.1016/j.tsf.2012.05.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038304195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040609012005986</els_id><sourcerecordid>1038304195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-8db37156f09085958df861e6a7abd797797e0a64aa8259333c3936aa9f9922613</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AG-5CF5aJ0mbNngS8QsEPeg5xDRxs3TTmskK_nuzrHgUAgPJM5N3HkLOGNQMmLxc1Rl9zYHxGtoaeLNHFqzvVMU7wfbJAqCBSoKCQ3KEuAIoJBcL8vI852DNSOc0zS7l4JCaOFB0EUP8oGaex_KewxSRTp6OIS_DZk1DmiKdlxPOS5MdLZeR-jCu8YQceDOiO_2tx-Tt7vb15qF6er5_vLl-qmzDZa764V10rJW-ROpb1faD7yVz0nTmfehUV44DIxtjet4qIYQVSkhjlFeKc8nEMbnYzS3BPzcOs14HtG4cTXTTBjUD0QtomGoLynaoTRNicl7PKaxN-i6Q3trTK13s6a09Da0u9krP-e94g0WPTybagH-NJUHTQN8V7mrHubLrV3BJow0uWjeE5GzWwxT--eUHheGEXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038304195</pqid></control><display><type>article</type><title>Optical properties and sensing applications of lithium iron phosphate thin films</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Nizamidin, Patima ; Yimit, Abliz ; De Wang, Ji ; Itoh, Kiminori</creator><creatorcontrib>Nizamidin, Patima ; Yimit, Abliz ; De Wang, Ji ; Itoh, Kiminori</creatorcontrib><description>A composite optical waveguide sensor, consisting of lithium iron phosphate (LiFePO4, LFP) as the sensing material, was constructed and utilized for the detection of volatile organic compound gases. Nano-LFP powder was prepared via the hydrothermal method and was subsequently utilized in a dip-coating procedure for the fabrication of LFP thin films. The effect of heat treating temperature on the refractive index of the thin films was studied. A glass optical waveguide gas sensor was fabricated by coating an LFP thin film on the surface of single-mode tin-diffused glass optical waveguide. The sensor was found to exhibit a linear response to xylene in the range of 50–1000ppm, with response times of less than 5s. ► LiFePO4 was selected as sensing material for xylene detection. ► Refractive index of LiFePO4 thin films increases with annealing temperature from 120 to 450°C. ► LiFePO4 optical waveguide sensor easily detects 50ppm of xylene gas with response&lt;5s. ► Below 100ppm, no interference is caused by other volatile organic compounds.</description><identifier>ISSN: 0040-6090</identifier><identifier>EISSN: 1879-2731</identifier><identifier>DOI: 10.1016/j.tsf.2012.05.024</identifier><identifier>CODEN: THSFAP</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Detection ; Exact sciences and technology ; Gas sensor ; General equipment and techniques ; Growth from solutions ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Iron ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Lithium ; Lithium iron phosphate ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of deposition of films and coatings; film growth and epitaxy ; Nanostructure ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of specific thin films ; Optical waveguide ; Optical waveguides ; Phosphates ; Physics ; Refractive index ; Sensors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Sol–gel deposition ; Thin films ; Xylene</subject><ispartof>Thin solid films, 2012-07, Vol.520 (19), p.6250-6255</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-8db37156f09085958df861e6a7abd797797e0a64aa8259333c3936aa9f9922613</citedby><cites>FETCH-LOGICAL-c426t-8db37156f09085958df861e6a7abd797797e0a64aa8259333c3936aa9f9922613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26144087$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nizamidin, Patima</creatorcontrib><creatorcontrib>Yimit, Abliz</creatorcontrib><creatorcontrib>De Wang, Ji</creatorcontrib><creatorcontrib>Itoh, Kiminori</creatorcontrib><title>Optical properties and sensing applications of lithium iron phosphate thin films</title><title>Thin solid films</title><description>A composite optical waveguide sensor, consisting of lithium iron phosphate (LiFePO4, LFP) as the sensing material, was constructed and utilized for the detection of volatile organic compound gases. Nano-LFP powder was prepared via the hydrothermal method and was subsequently utilized in a dip-coating procedure for the fabrication of LFP thin films. The effect of heat treating temperature on the refractive index of the thin films was studied. A glass optical waveguide gas sensor was fabricated by coating an LFP thin film on the surface of single-mode tin-diffused glass optical waveguide. The sensor was found to exhibit a linear response to xylene in the range of 50–1000ppm, with response times of less than 5s. ► LiFePO4 was selected as sensing material for xylene detection. ► Refractive index of LiFePO4 thin films increases with annealing temperature from 120 to 450°C. ► LiFePO4 optical waveguide sensor easily detects 50ppm of xylene gas with response&lt;5s. ► Below 100ppm, no interference is caused by other volatile organic compounds.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Detection</subject><subject>Exact sciences and technology</subject><subject>Gas sensor</subject><subject>General equipment and techniques</subject><subject>Growth from solutions</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Iron</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Lithium</subject><subject>Lithium iron phosphate</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Nanostructure</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of specific thin films</subject><subject>Optical waveguide</subject><subject>Optical waveguides</subject><subject>Phosphates</subject><subject>Physics</subject><subject>Refractive index</subject><subject>Sensors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Sol–gel deposition</subject><subject>Thin films</subject><subject>Xylene</subject><issn>0040-6090</issn><issn>1879-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AG-5CF5aJ0mbNngS8QsEPeg5xDRxs3TTmskK_nuzrHgUAgPJM5N3HkLOGNQMmLxc1Rl9zYHxGtoaeLNHFqzvVMU7wfbJAqCBSoKCQ3KEuAIoJBcL8vI852DNSOc0zS7l4JCaOFB0EUP8oGaex_KewxSRTp6OIS_DZk1DmiKdlxPOS5MdLZeR-jCu8YQceDOiO_2tx-Tt7vb15qF6er5_vLl-qmzDZa764V10rJW-ROpb1faD7yVz0nTmfehUV44DIxtjet4qIYQVSkhjlFeKc8nEMbnYzS3BPzcOs14HtG4cTXTTBjUD0QtomGoLynaoTRNicl7PKaxN-i6Q3trTK13s6a09Da0u9krP-e94g0WPTybagH-NJUHTQN8V7mrHubLrV3BJow0uWjeE5GzWwxT--eUHheGEXw</recordid><startdate>20120731</startdate><enddate>20120731</enddate><creator>Nizamidin, Patima</creator><creator>Yimit, Abliz</creator><creator>De Wang, Ji</creator><creator>Itoh, Kiminori</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120731</creationdate><title>Optical properties and sensing applications of lithium iron phosphate thin films</title><author>Nizamidin, Patima ; Yimit, Abliz ; De Wang, Ji ; Itoh, Kiminori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-8db37156f09085958df861e6a7abd797797e0a64aa8259333c3936aa9f9922613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Detection</topic><topic>Exact sciences and technology</topic><topic>Gas sensor</topic><topic>General equipment and techniques</topic><topic>Growth from solutions</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Iron</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Lithium</topic><topic>Lithium iron phosphate</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Nanostructure</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of specific thin films</topic><topic>Optical waveguide</topic><topic>Optical waveguides</topic><topic>Phosphates</topic><topic>Physics</topic><topic>Refractive index</topic><topic>Sensors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Sol–gel deposition</topic><topic>Thin films</topic><topic>Xylene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nizamidin, Patima</creatorcontrib><creatorcontrib>Yimit, Abliz</creatorcontrib><creatorcontrib>De Wang, Ji</creatorcontrib><creatorcontrib>Itoh, Kiminori</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Thin solid films</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nizamidin, Patima</au><au>Yimit, Abliz</au><au>De Wang, Ji</au><au>Itoh, Kiminori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical properties and sensing applications of lithium iron phosphate thin films</atitle><jtitle>Thin solid films</jtitle><date>2012-07-31</date><risdate>2012</risdate><volume>520</volume><issue>19</issue><spage>6250</spage><epage>6255</epage><pages>6250-6255</pages><issn>0040-6090</issn><eissn>1879-2731</eissn><coden>THSFAP</coden><abstract>A composite optical waveguide sensor, consisting of lithium iron phosphate (LiFePO4, LFP) as the sensing material, was constructed and utilized for the detection of volatile organic compound gases. Nano-LFP powder was prepared via the hydrothermal method and was subsequently utilized in a dip-coating procedure for the fabrication of LFP thin films. The effect of heat treating temperature on the refractive index of the thin films was studied. A glass optical waveguide gas sensor was fabricated by coating an LFP thin film on the surface of single-mode tin-diffused glass optical waveguide. The sensor was found to exhibit a linear response to xylene in the range of 50–1000ppm, with response times of less than 5s. ► LiFePO4 was selected as sensing material for xylene detection. ► Refractive index of LiFePO4 thin films increases with annealing temperature from 120 to 450°C. ► LiFePO4 optical waveguide sensor easily detects 50ppm of xylene gas with response&lt;5s. ► Below 100ppm, no interference is caused by other volatile organic compounds.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tsf.2012.05.024</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-6090
ispartof Thin solid films, 2012-07, Vol.520 (19), p.6250-6255
issn 0040-6090
1879-2731
language eng
recordid cdi_proquest_miscellaneous_1038304195
source ScienceDirect Freedom Collection 2022-2024
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cross-disciplinary physics: materials science
rheology
Detection
Exact sciences and technology
Gas sensor
General equipment and techniques
Growth from solutions
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Iron
Liquid phase epitaxy
deposition from liquid phases (melts, solutions, and surface layers on liquids)
Lithium
Lithium iron phosphate
Materials science
Methods of crystal growth
physics of crystal growth
Methods of deposition of films and coatings
film growth and epitaxy
Nanostructure
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of specific thin films
Optical waveguide
Optical waveguides
Phosphates
Physics
Refractive index
Sensors
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Sol–gel deposition
Thin films
Xylene
title Optical properties and sensing applications of lithium iron phosphate thin films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20properties%20and%20sensing%20applications%20of%20lithium%20iron%20phosphate%20thin%20films&rft.jtitle=Thin%20solid%20films&rft.au=Nizamidin,%20Patima&rft.date=2012-07-31&rft.volume=520&rft.issue=19&rft.spage=6250&rft.epage=6255&rft.pages=6250-6255&rft.issn=0040-6090&rft.eissn=1879-2731&rft.coden=THSFAP&rft_id=info:doi/10.1016/j.tsf.2012.05.024&rft_dat=%3Cproquest_cross%3E1038304195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-8db37156f09085958df861e6a7abd797797e0a64aa8259333c3936aa9f9922613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038304195&rft_id=info:pmid/&rfr_iscdi=true