Loading…
The self-assembly mechanism of the Lindqvist anion [W6O19]2- in aqueous solution: a density functional theory study
The formation mechanism is always a fundamental and confused issue for polyoxometalate chemistry. Two formation mechanisms (M1 and M2) of the Lindqvist anion [W(6)O(19)](2-) have been adopted to investigate it's self-assembly reaction pathways at a density functional theory (DFT) level. The pot...
Saved in:
Published in: | Dalton transactions : an international journal of inorganic chemistry 2012-01, Vol.41 (37), p.11361-11368 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The formation mechanism is always a fundamental and confused issue for polyoxometalate chemistry. Two formation mechanisms (M1 and M2) of the Lindqvist anion [W(6)O(19)](2-) have been adopted to investigate it's self-assembly reaction pathways at a density functional theory (DFT) level. The potential energy surfaces reveal that both the mechanisms are thermodynamically favorable and overall barrierless at room temperature, but M2 is slightly dominant to M1. The formation of the pentanuclear species [W(5)O(16)](2-) and [W(5)O(15)(OH)](-) are recognized as the rate-determining steps in the whole assembly polymerization processes. These two steps involve the highest energy barriers with 30.48 kcal mol(-1) and 28.90 kcal mol(-1), respectively, for M1 and M2. [W(4)O(13)](2-) and [W(4)O(12)(OH)](-) are proved to be the most stable building blocks. In addition, DFT results reveal that the formation of [W(3)O(10)](2-) experiences a lower barrier along the chain channel. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c2dt31166f |