Loading…
Broad segmental progeroid changes in short-lived Ercc1(-/Δ7) mice
Genome maintenance is considered a prime longevity assurance mechanism as apparent from many progeroid human syndromes that are caused by genome maintenance defects. The ERCC1 protein is involved in three genome maintenance systems: nucleotide excision repair, interstrand cross-link repair, and homo...
Saved in:
Published in: | Pathobiology of aging & age related diseases 2011, Vol.1 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Genome maintenance is considered a prime longevity assurance mechanism as apparent from many progeroid human syndromes that are caused by genome maintenance defects. The ERCC1 protein is involved in three genome maintenance systems: nucleotide excision repair, interstrand cross-link repair, and homologous recombination. Here we describe in-life and post-mortem observations for a hypomorphic Ercc1 variant, Ercc1(-/Δ7), which is hemizygous for a single truncated Ercc1 allele, encoding a protein lacking the last seven amino acids. Ercc1(-/Δ7) mice were much smaller and median life span was markedly reduced compared to wild-type siblings: 20 and 118 weeks, respectively. Multiple signs and symptoms of aging were found to occur at an accelerated rate in the Ercc1(-/Δ7) mice as compared to wild-type controls, including a decline in weight of both whole body and various organs, numerous histopathological lesions, and immune parameters. Together they define a segmental progeroid phenotype of the Ercc1(-/Δ7) mouse model. |
---|---|
ISSN: | 2001-0001 |
DOI: | 10.3402/pba.v1i0.7219 |