Loading…

Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts

Coupled TiO2–ZnO mixed oxides improves hydrogen production form water splitting [Display omitted] ► Hydrogen production from water splitting reaction. ► TiO2–ZnO mixed oxides synthesized by sol–gel method with different ZnO content. ► Mixed oxides increase up to six times hydrogen formation comparin...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) 2012-10, Vol.100, p.139-143
Main Authors: Pérez-Larios, A., Lopez, R., Hernández-Gordillo, A., Tzompantzi, F., Gómez, R., Torres-Guerra, L.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543
cites cdi_FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543
container_end_page 143
container_issue
container_start_page 139
container_title Fuel (Guildford)
container_volume 100
creator Pérez-Larios, A.
Lopez, R.
Hernández-Gordillo, A.
Tzompantzi, F.
Gómez, R.
Torres-Guerra, L.M.
description Coupled TiO2–ZnO mixed oxides improves hydrogen production form water splitting [Display omitted] ► Hydrogen production from water splitting reaction. ► TiO2–ZnO mixed oxides synthesized by sol–gel method with different ZnO content. ► Mixed oxides increase up to six times hydrogen formation comparing with pure TiO2. TiO2–ZnO mixed oxides (1.0, 3.0, 5.0 and 10.0wt.% Zn) photoconductors were prepared by the sol–gel method and used for the H2 production from water splitting. The solids were characterized by nitrogen physisorption, XRD, RAMAN, EDS, UV–Vis and XPS spectroscopy. High specific surface areas (85–159m2/g) were obtained in all the mixed oxides compared to the bare TiO2 sample (64m2/g). XRD and Raman spectra show that anatase is the predominant crystalline phase on the TiO2–ZnO solids. The band gap energy of the solids is in the interval from 3.05 to 3.12eV which are in the same order than TiO2 (3.2eV). These solids were proved in the photocatalytic water splitting and resulted six times more active (1300μmol/h) than the reference TiO2 (190μmol/h) semiconductor.
doi_str_mv 10.1016/j.fuel.2012.02.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038608966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236112001494</els_id><sourcerecordid>1038608966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKsv4GkvgpetyWY32YIXKX5BoZd68WCIyURTdjc1yWp78x18Q5_ELBWPwjDDwO8_H3-ETgmeEEzYxWpiemgmBSbFBA_B9tCI1JzmnFR0H41wovKCMnKIjkJYYYx5XZUj9HTfrr17B529brV3L9Blqde9itZ1mfGuzT5kBJ-FdWNjtN1L1ochL-2i-P78euwWWWs3Se82VkPI1q8uOiWjbLYhhmN0YGQT4OS3jtHDzfVydpfPF7f3s6t5roopjTnBjGhKORiuoaLKAHBTckyZVppwg0suoeKlotiompj0p2TPpZ7istZFVdIxOt_NTce_9RCiaG1Q0DSyA9cHQTCtGa6njCW02KHKuxA8GLH2tpV-myAxmClWYjBTDGYKPMQgOvudL4OSjfGyUzb8KRNREspp4i53HKRn3y14EZSFToG2HlQU2tn_1vwAaDyM3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038608966</pqid></control><display><type>article</type><title>Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts</title><source>ScienceDirect Journals</source><creator>Pérez-Larios, A. ; Lopez, R. ; Hernández-Gordillo, A. ; Tzompantzi, F. ; Gómez, R. ; Torres-Guerra, L.M.</creator><creatorcontrib>Pérez-Larios, A. ; Lopez, R. ; Hernández-Gordillo, A. ; Tzompantzi, F. ; Gómez, R. ; Torres-Guerra, L.M.</creatorcontrib><description>Coupled TiO2–ZnO mixed oxides improves hydrogen production form water splitting [Display omitted] ► Hydrogen production from water splitting reaction. ► TiO2–ZnO mixed oxides synthesized by sol–gel method with different ZnO content. ► Mixed oxides increase up to six times hydrogen formation comparing with pure TiO2. TiO2–ZnO mixed oxides (1.0, 3.0, 5.0 and 10.0wt.% Zn) photoconductors were prepared by the sol–gel method and used for the H2 production from water splitting. The solids were characterized by nitrogen physisorption, XRD, RAMAN, EDS, UV–Vis and XPS spectroscopy. High specific surface areas (85–159m2/g) were obtained in all the mixed oxides compared to the bare TiO2 sample (64m2/g). XRD and Raman spectra show that anatase is the predominant crystalline phase on the TiO2–ZnO solids. The band gap energy of the solids is in the interval from 3.05 to 3.12eV which are in the same order than TiO2 (3.2eV). These solids were proved in the photocatalytic water splitting and resulted six times more active (1300μmol/h) than the reference TiO2 (190μmol/h) semiconductor.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2012.02.026</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fuels ; Hydrogen ; Hydrogen production ; Photocatalysts TiO2–ZnO ; Photoconductors TiO2–ZnO ; TiO2–ZnO mixed oxides ; Water splitting</subject><ispartof>Fuel (Guildford), 2012-10, Vol.100, p.139-143</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543</citedby><cites>FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26341373$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez-Larios, A.</creatorcontrib><creatorcontrib>Lopez, R.</creatorcontrib><creatorcontrib>Hernández-Gordillo, A.</creatorcontrib><creatorcontrib>Tzompantzi, F.</creatorcontrib><creatorcontrib>Gómez, R.</creatorcontrib><creatorcontrib>Torres-Guerra, L.M.</creatorcontrib><title>Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts</title><title>Fuel (Guildford)</title><description>Coupled TiO2–ZnO mixed oxides improves hydrogen production form water splitting [Display omitted] ► Hydrogen production from water splitting reaction. ► TiO2–ZnO mixed oxides synthesized by sol–gel method with different ZnO content. ► Mixed oxides increase up to six times hydrogen formation comparing with pure TiO2. TiO2–ZnO mixed oxides (1.0, 3.0, 5.0 and 10.0wt.% Zn) photoconductors were prepared by the sol–gel method and used for the H2 production from water splitting. The solids were characterized by nitrogen physisorption, XRD, RAMAN, EDS, UV–Vis and XPS spectroscopy. High specific surface areas (85–159m2/g) were obtained in all the mixed oxides compared to the bare TiO2 sample (64m2/g). XRD and Raman spectra show that anatase is the predominant crystalline phase on the TiO2–ZnO solids. The band gap energy of the solids is in the interval from 3.05 to 3.12eV which are in the same order than TiO2 (3.2eV). These solids were proved in the photocatalytic water splitting and resulted six times more active (1300μmol/h) than the reference TiO2 (190μmol/h) semiconductor.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Photocatalysts TiO2–ZnO</subject><subject>Photoconductors TiO2–ZnO</subject><subject>TiO2–ZnO mixed oxides</subject><subject>Water splitting</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKsv4GkvgpetyWY32YIXKX5BoZd68WCIyURTdjc1yWp78x18Q5_ELBWPwjDDwO8_H3-ETgmeEEzYxWpiemgmBSbFBA_B9tCI1JzmnFR0H41wovKCMnKIjkJYYYx5XZUj9HTfrr17B529brV3L9Blqde9itZ1mfGuzT5kBJ-FdWNjtN1L1ochL-2i-P78euwWWWs3Se82VkPI1q8uOiWjbLYhhmN0YGQT4OS3jtHDzfVydpfPF7f3s6t5roopjTnBjGhKORiuoaLKAHBTckyZVppwg0suoeKlotiompj0p2TPpZ7istZFVdIxOt_NTce_9RCiaG1Q0DSyA9cHQTCtGa6njCW02KHKuxA8GLH2tpV-myAxmClWYjBTDGYKPMQgOvudL4OSjfGyUzb8KRNREspp4i53HKRn3y14EZSFToG2HlQU2tn_1vwAaDyM3Q</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Pérez-Larios, A.</creator><creator>Lopez, R.</creator><creator>Hernández-Gordillo, A.</creator><creator>Tzompantzi, F.</creator><creator>Gómez, R.</creator><creator>Torres-Guerra, L.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20121001</creationdate><title>Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts</title><author>Pérez-Larios, A. ; Lopez, R. ; Hernández-Gordillo, A. ; Tzompantzi, F. ; Gómez, R. ; Torres-Guerra, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Photocatalysts TiO2–ZnO</topic><topic>Photoconductors TiO2–ZnO</topic><topic>TiO2–ZnO mixed oxides</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Larios, A.</creatorcontrib><creatorcontrib>Lopez, R.</creatorcontrib><creatorcontrib>Hernández-Gordillo, A.</creatorcontrib><creatorcontrib>Tzompantzi, F.</creatorcontrib><creatorcontrib>Gómez, R.</creatorcontrib><creatorcontrib>Torres-Guerra, L.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Larios, A.</au><au>Lopez, R.</au><au>Hernández-Gordillo, A.</au><au>Tzompantzi, F.</au><au>Gómez, R.</au><au>Torres-Guerra, L.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts</atitle><jtitle>Fuel (Guildford)</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>100</volume><spage>139</spage><epage>143</epage><pages>139-143</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Coupled TiO2–ZnO mixed oxides improves hydrogen production form water splitting [Display omitted] ► Hydrogen production from water splitting reaction. ► TiO2–ZnO mixed oxides synthesized by sol–gel method with different ZnO content. ► Mixed oxides increase up to six times hydrogen formation comparing with pure TiO2. TiO2–ZnO mixed oxides (1.0, 3.0, 5.0 and 10.0wt.% Zn) photoconductors were prepared by the sol–gel method and used for the H2 production from water splitting. The solids were characterized by nitrogen physisorption, XRD, RAMAN, EDS, UV–Vis and XPS spectroscopy. High specific surface areas (85–159m2/g) were obtained in all the mixed oxides compared to the bare TiO2 sample (64m2/g). XRD and Raman spectra show that anatase is the predominant crystalline phase on the TiO2–ZnO solids. The band gap energy of the solids is in the interval from 3.05 to 3.12eV which are in the same order than TiO2 (3.2eV). These solids were proved in the photocatalytic water splitting and resulted six times more active (1300μmol/h) than the reference TiO2 (190μmol/h) semiconductor.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2012.02.026</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2012-10, Vol.100, p.139-143
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_miscellaneous_1038608966
source ScienceDirect Journals
subjects Alternative fuels. Production and utilization
Applied sciences
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fuels
Hydrogen
Hydrogen production
Photocatalysts TiO2–ZnO
Photoconductors TiO2–ZnO
TiO2–ZnO mixed oxides
Water splitting
title Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20hydrogen%20production%20from%20water%20splitting%20using%20TiO2%E2%80%93ZnO%20mixed%20oxides%20photocatalysts&rft.jtitle=Fuel%20(Guildford)&rft.au=P%C3%A9rez-Larios,%20A.&rft.date=2012-10-01&rft.volume=100&rft.spage=139&rft.epage=143&rft.pages=139-143&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2012.02.026&rft_dat=%3Cproquest_cross%3E1038608966%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038608966&rft_id=info:pmid/&rfr_iscdi=true