Loading…
Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts
Coupled TiO2–ZnO mixed oxides improves hydrogen production form water splitting [Display omitted] ► Hydrogen production from water splitting reaction. ► TiO2–ZnO mixed oxides synthesized by sol–gel method with different ZnO content. ► Mixed oxides increase up to six times hydrogen formation comparin...
Saved in:
Published in: | Fuel (Guildford) 2012-10, Vol.100, p.139-143 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543 |
container_end_page | 143 |
container_issue | |
container_start_page | 139 |
container_title | Fuel (Guildford) |
container_volume | 100 |
creator | Pérez-Larios, A. Lopez, R. Hernández-Gordillo, A. Tzompantzi, F. Gómez, R. Torres-Guerra, L.M. |
description | Coupled TiO2–ZnO mixed oxides improves hydrogen production form water splitting [Display omitted]
► Hydrogen production from water splitting reaction. ► TiO2–ZnO mixed oxides synthesized by sol–gel method with different ZnO content. ► Mixed oxides increase up to six times hydrogen formation comparing with pure TiO2.
TiO2–ZnO mixed oxides (1.0, 3.0, 5.0 and 10.0wt.% Zn) photoconductors were prepared by the sol–gel method and used for the H2 production from water splitting. The solids were characterized by nitrogen physisorption, XRD, RAMAN, EDS, UV–Vis and XPS spectroscopy. High specific surface areas (85–159m2/g) were obtained in all the mixed oxides compared to the bare TiO2 sample (64m2/g). XRD and Raman spectra show that anatase is the predominant crystalline phase on the TiO2–ZnO solids. The band gap energy of the solids is in the interval from 3.05 to 3.12eV which are in the same order than TiO2 (3.2eV). These solids were proved in the photocatalytic water splitting and resulted six times more active (1300μmol/h) than the reference TiO2 (190μmol/h) semiconductor. |
doi_str_mv | 10.1016/j.fuel.2012.02.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038608966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236112001494</els_id><sourcerecordid>1038608966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKsv4GkvgpetyWY32YIXKX5BoZd68WCIyURTdjc1yWp78x18Q5_ELBWPwjDDwO8_H3-ETgmeEEzYxWpiemgmBSbFBA_B9tCI1JzmnFR0H41wovKCMnKIjkJYYYx5XZUj9HTfrr17B529brV3L9Blqde9itZ1mfGuzT5kBJ-FdWNjtN1L1ochL-2i-P78euwWWWs3Se82VkPI1q8uOiWjbLYhhmN0YGQT4OS3jtHDzfVydpfPF7f3s6t5roopjTnBjGhKORiuoaLKAHBTckyZVppwg0suoeKlotiompj0p2TPpZ7istZFVdIxOt_NTce_9RCiaG1Q0DSyA9cHQTCtGa6njCW02KHKuxA8GLH2tpV-myAxmClWYjBTDGYKPMQgOvudL4OSjfGyUzb8KRNREspp4i53HKRn3y14EZSFToG2HlQU2tn_1vwAaDyM3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038608966</pqid></control><display><type>article</type><title>Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts</title><source>ScienceDirect Journals</source><creator>Pérez-Larios, A. ; Lopez, R. ; Hernández-Gordillo, A. ; Tzompantzi, F. ; Gómez, R. ; Torres-Guerra, L.M.</creator><creatorcontrib>Pérez-Larios, A. ; Lopez, R. ; Hernández-Gordillo, A. ; Tzompantzi, F. ; Gómez, R. ; Torres-Guerra, L.M.</creatorcontrib><description>Coupled TiO2–ZnO mixed oxides improves hydrogen production form water splitting [Display omitted]
► Hydrogen production from water splitting reaction. ► TiO2–ZnO mixed oxides synthesized by sol–gel method with different ZnO content. ► Mixed oxides increase up to six times hydrogen formation comparing with pure TiO2.
TiO2–ZnO mixed oxides (1.0, 3.0, 5.0 and 10.0wt.% Zn) photoconductors were prepared by the sol–gel method and used for the H2 production from water splitting. The solids were characterized by nitrogen physisorption, XRD, RAMAN, EDS, UV–Vis and XPS spectroscopy. High specific surface areas (85–159m2/g) were obtained in all the mixed oxides compared to the bare TiO2 sample (64m2/g). XRD and Raman spectra show that anatase is the predominant crystalline phase on the TiO2–ZnO solids. The band gap energy of the solids is in the interval from 3.05 to 3.12eV which are in the same order than TiO2 (3.2eV). These solids were proved in the photocatalytic water splitting and resulted six times more active (1300μmol/h) than the reference TiO2 (190μmol/h) semiconductor.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2012.02.026</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fuels ; Hydrogen ; Hydrogen production ; Photocatalysts TiO2–ZnO ; Photoconductors TiO2–ZnO ; TiO2–ZnO mixed oxides ; Water splitting</subject><ispartof>Fuel (Guildford), 2012-10, Vol.100, p.139-143</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543</citedby><cites>FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26341373$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez-Larios, A.</creatorcontrib><creatorcontrib>Lopez, R.</creatorcontrib><creatorcontrib>Hernández-Gordillo, A.</creatorcontrib><creatorcontrib>Tzompantzi, F.</creatorcontrib><creatorcontrib>Gómez, R.</creatorcontrib><creatorcontrib>Torres-Guerra, L.M.</creatorcontrib><title>Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts</title><title>Fuel (Guildford)</title><description>Coupled TiO2–ZnO mixed oxides improves hydrogen production form water splitting [Display omitted]
► Hydrogen production from water splitting reaction. ► TiO2–ZnO mixed oxides synthesized by sol–gel method with different ZnO content. ► Mixed oxides increase up to six times hydrogen formation comparing with pure TiO2.
TiO2–ZnO mixed oxides (1.0, 3.0, 5.0 and 10.0wt.% Zn) photoconductors were prepared by the sol–gel method and used for the H2 production from water splitting. The solids were characterized by nitrogen physisorption, XRD, RAMAN, EDS, UV–Vis and XPS spectroscopy. High specific surface areas (85–159m2/g) were obtained in all the mixed oxides compared to the bare TiO2 sample (64m2/g). XRD and Raman spectra show that anatase is the predominant crystalline phase on the TiO2–ZnO solids. The band gap energy of the solids is in the interval from 3.05 to 3.12eV which are in the same order than TiO2 (3.2eV). These solids were proved in the photocatalytic water splitting and resulted six times more active (1300μmol/h) than the reference TiO2 (190μmol/h) semiconductor.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Photocatalysts TiO2–ZnO</subject><subject>Photoconductors TiO2–ZnO</subject><subject>TiO2–ZnO mixed oxides</subject><subject>Water splitting</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKsv4GkvgpetyWY32YIXKX5BoZd68WCIyURTdjc1yWp78x18Q5_ELBWPwjDDwO8_H3-ETgmeEEzYxWpiemgmBSbFBA_B9tCI1JzmnFR0H41wovKCMnKIjkJYYYx5XZUj9HTfrr17B529brV3L9Blqde9itZ1mfGuzT5kBJ-FdWNjtN1L1ochL-2i-P78euwWWWs3Se82VkPI1q8uOiWjbLYhhmN0YGQT4OS3jtHDzfVydpfPF7f3s6t5roopjTnBjGhKORiuoaLKAHBTckyZVppwg0suoeKlotiompj0p2TPpZ7istZFVdIxOt_NTce_9RCiaG1Q0DSyA9cHQTCtGa6njCW02KHKuxA8GLH2tpV-myAxmClWYjBTDGYKPMQgOvudL4OSjfGyUzb8KRNREspp4i53HKRn3y14EZSFToG2HlQU2tn_1vwAaDyM3Q</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Pérez-Larios, A.</creator><creator>Lopez, R.</creator><creator>Hernández-Gordillo, A.</creator><creator>Tzompantzi, F.</creator><creator>Gómez, R.</creator><creator>Torres-Guerra, L.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20121001</creationdate><title>Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts</title><author>Pérez-Larios, A. ; Lopez, R. ; Hernández-Gordillo, A. ; Tzompantzi, F. ; Gómez, R. ; Torres-Guerra, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Photocatalysts TiO2–ZnO</topic><topic>Photoconductors TiO2–ZnO</topic><topic>TiO2–ZnO mixed oxides</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-Larios, A.</creatorcontrib><creatorcontrib>Lopez, R.</creatorcontrib><creatorcontrib>Hernández-Gordillo, A.</creatorcontrib><creatorcontrib>Tzompantzi, F.</creatorcontrib><creatorcontrib>Gómez, R.</creatorcontrib><creatorcontrib>Torres-Guerra, L.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-Larios, A.</au><au>Lopez, R.</au><au>Hernández-Gordillo, A.</au><au>Tzompantzi, F.</au><au>Gómez, R.</au><au>Torres-Guerra, L.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts</atitle><jtitle>Fuel (Guildford)</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>100</volume><spage>139</spage><epage>143</epage><pages>139-143</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Coupled TiO2–ZnO mixed oxides improves hydrogen production form water splitting [Display omitted]
► Hydrogen production from water splitting reaction. ► TiO2–ZnO mixed oxides synthesized by sol–gel method with different ZnO content. ► Mixed oxides increase up to six times hydrogen formation comparing with pure TiO2.
TiO2–ZnO mixed oxides (1.0, 3.0, 5.0 and 10.0wt.% Zn) photoconductors were prepared by the sol–gel method and used for the H2 production from water splitting. The solids were characterized by nitrogen physisorption, XRD, RAMAN, EDS, UV–Vis and XPS spectroscopy. High specific surface areas (85–159m2/g) were obtained in all the mixed oxides compared to the bare TiO2 sample (64m2/g). XRD and Raman spectra show that anatase is the predominant crystalline phase on the TiO2–ZnO solids. The band gap energy of the solids is in the interval from 3.05 to 3.12eV which are in the same order than TiO2 (3.2eV). These solids were proved in the photocatalytic water splitting and resulted six times more active (1300μmol/h) than the reference TiO2 (190μmol/h) semiconductor.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2012.02.026</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2012-10, Vol.100, p.139-143 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038608966 |
source | ScienceDirect Journals |
subjects | Alternative fuels. Production and utilization Applied sciences Energy Energy. Thermal use of fuels Exact sciences and technology Fuels Hydrogen Hydrogen production Photocatalysts TiO2–ZnO Photoconductors TiO2–ZnO TiO2–ZnO mixed oxides Water splitting |
title | Improved hydrogen production from water splitting using TiO2–ZnO mixed oxides photocatalysts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A00%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20hydrogen%20production%20from%20water%20splitting%20using%20TiO2%E2%80%93ZnO%20mixed%20oxides%20photocatalysts&rft.jtitle=Fuel%20(Guildford)&rft.au=P%C3%A9rez-Larios,%20A.&rft.date=2012-10-01&rft.volume=100&rft.spage=139&rft.epage=143&rft.pages=139-143&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2012.02.026&rft_dat=%3Cproquest_cross%3E1038608966%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-1061d337ef7de53cfee7f47036dcd17f047ae574c30fc81f201a6b4d9048d2543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1038608966&rft_id=info:pmid/&rfr_iscdi=true |