Loading…
Increased Expression of the Mineralocorticoid Receptor in the Brain of Spontaneously Hypertensive Rats
The mineralocorticoid receptor (MR) has been considered as both neuroprotective and damaging to the function of the central nervous system. MR may be also involved in central regulation of blood pressure. In the present study, we compared the expression of MR and the glucocorticoid receptor (GR) in...
Saved in:
Published in: | Journal of neuroendocrinology 2012-09, Vol.24 (9), p.1249-1258 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mineralocorticoid receptor (MR) has been considered as both neuroprotective and damaging to the function of the central nervous system. MR may be also involved in central regulation of blood pressure. In the present study, we compared the expression of MR and the glucocorticoid receptor (GR) in the hippocampus and hypothalamus of 16‐week‐old spontaneously hypertensive rats (SHR) and normotensive control Wistar Kyoto (WKY) rats. In the hippocampus, MR expression was studied by in situ hybridization (ISH), quantitative polymerase chain reaction (PCR) and immunohistochemistry, whereas GR expression was analysed using the latter two procedures. Hypertensive animals showed an increased expression of MR mRNA in the whole hippocampus according to qPCR data and also in CA3 by ISH. Immunocytochemical staining for MR of the dorsal hippocampus, however, did not reveal differences between SHR and WKY rats. SHR showed elevated hypothalamic MR mRNA by qPCR, as well as an increased number of MR immunopositive cells in the magnocellular paraventricular region, compared to WKY rats. By contrast, expression levels of GR mRNA or protein in the hippocampus and hypothalamus of SHR were similar to those of WKY rats. Furthermore, we investigated the role of MR in the hypertensive rats by i.c.v. injection of the MR antagonist RU‐2831. This compound produced a significant drop in blood pressure for SHR. In conclusion, MR expression is increased in the hippocampus and hypothalamus of SHR. We suggest that pathological MR overdrive may take responsibility for up‐regulation of blood pressure and the encephalopathy of hypertension. |
---|---|
ISSN: | 0953-8194 1365-2826 |
DOI: | 10.1111/j.1365-2826.2012.02332.x |