Loading…
Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae
► p-Coumaric acid of 10.5mg/L produced in recombinant yeast expressing PAL and C4H. ► Resveratrol of 3.4mg/L produced from tyrosine in yeast introducing four genes. ► Production of resveratrol improved to 4.3mg/L by increasing pool of malonyl-CoA. ► Addition of tyrosine led to increase in resveratro...
Saved in:
Published in: | Enzyme and microbial technology 2012-09, Vol.51 (4), p.211-216 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-d1db7eed6750df1bd556bfd63bf6f1fc83e7439d9ed3ba1d58f4f17012c60c203 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-d1db7eed6750df1bd556bfd63bf6f1fc83e7439d9ed3ba1d58f4f17012c60c203 |
container_end_page | 216 |
container_issue | 4 |
container_start_page | 211 |
container_title | Enzyme and microbial technology |
container_volume | 51 |
creator | Shin, So-Yeon Jung, Sang-Min Kim, Myoung-Dong Han, Nam Soo Seo, Jin-Ho |
description | ► p-Coumaric acid of 10.5mg/L produced in recombinant yeast expressing PAL and C4H. ► Resveratrol of 3.4mg/L produced from tyrosine in yeast introducing four genes. ► Production of resveratrol improved to 4.3mg/L by increasing pool of malonyl-CoA. ► Addition of tyrosine led to increase in resveratrol produced up to 5.8mg/L.
Resveratrol, a polyphenol compound found in grape skins, has been proposed to account for the beneficial effects of red wine against heart disease. To produce resveratrol in Saccharomyces cerevisiae, four heterologous genes were introduced: the phenylalanine ammonia lyase gene from Rhodosporidium toruloides, the cinnamic acid 4-hydroxylase and 4-coumarate:coenzyme A ligase genes both from Arabidopsis thaliana, and the stilbene synthase gene from Arachis hypogaea. When this recombinant yeast was cultivated by batch fermentation in YP medium containing 2% galactose, it produced 2.6mg/L p-coumaric acid and 3.3mg/L resveratrol. In order to increase the pool of malonyl-CoA, a key precursor in resveratrol biosynthesis, the acetyl-CoA carboxylase (ACC1) gene was additionally overexpressed in the yeast by replacing the native promoter of the ACC1 gene with the stronger GAL1 promoter and this resulted in enhanced production of resveratrol (4.3mg/L). Furthermore, when tyrosine was supplemented in the medium, the concentration of resveratrol increased up to 5.8mg/L. This result illustrates a possible strategy for developing metabolically engineered yeast strain for the economical production of resveratrol from cheap amino acids. |
doi_str_mv | 10.1016/j.enzmictec.2012.06.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1038614279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141022912001123</els_id><sourcerecordid>1033453947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-d1db7eed6750df1bd556bfd63bf6f1fc83e7439d9ed3ba1d58f4f17012c60c203</originalsourceid><addsrcrecordid>eNqNkc2LFDEQxYMo7rj6L2iOXrqtdD66-7gsfsGCgnoTQrpS0QzdnTXpGRj_erPMulc9FTx-r4p6j7FXAloBwrzZt7T-XiJuhG0HomvBtAD6EduJoR8bGGF8zHYglGig68YL9qyUPUAVFDxlF103DFJrvWPfP-fkD7jFtPIUeKZypOy2nGYeclr4dsqpxJV4XPlCm5vSHNHN84nT-qPqlMnzLw7xp6v4CalwrNoxlujoOXsS3Fzoxf28ZN_evf16_aG5-fT-4_XVTYMK1NZ44aeeyJtegw9i8lqbKXgjp2CCCDhI6pUc_UheTk54PQQVRF_fRgPYgbxkr897b3P6daCy2SUWpHl2K6VDsQLkYITq-vF_UKm0HFVf0f6MYo2gZAr2NsfF5VOF7F0Ldm8fWrB3LVgwtrZQnS_vjxymhfyD72_sFbg6A1RTOUbKtmCkFcnHTLhZn-I_j_wB64afZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1033453947</pqid></control><display><type>article</type><title>Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae</title><source>Elsevier</source><creator>Shin, So-Yeon ; Jung, Sang-Min ; Kim, Myoung-Dong ; Han, Nam Soo ; Seo, Jin-Ho</creator><creatorcontrib>Shin, So-Yeon ; Jung, Sang-Min ; Kim, Myoung-Dong ; Han, Nam Soo ; Seo, Jin-Ho</creatorcontrib><description>► p-Coumaric acid of 10.5mg/L produced in recombinant yeast expressing PAL and C4H. ► Resveratrol of 3.4mg/L produced from tyrosine in yeast introducing four genes. ► Production of resveratrol improved to 4.3mg/L by increasing pool of malonyl-CoA. ► Addition of tyrosine led to increase in resveratrol produced up to 5.8mg/L.
Resveratrol, a polyphenol compound found in grape skins, has been proposed to account for the beneficial effects of red wine against heart disease. To produce resveratrol in Saccharomyces cerevisiae, four heterologous genes were introduced: the phenylalanine ammonia lyase gene from Rhodosporidium toruloides, the cinnamic acid 4-hydroxylase and 4-coumarate:coenzyme A ligase genes both from Arabidopsis thaliana, and the stilbene synthase gene from Arachis hypogaea. When this recombinant yeast was cultivated by batch fermentation in YP medium containing 2% galactose, it produced 2.6mg/L p-coumaric acid and 3.3mg/L resveratrol. In order to increase the pool of malonyl-CoA, a key precursor in resveratrol biosynthesis, the acetyl-CoA carboxylase (ACC1) gene was additionally overexpressed in the yeast by replacing the native promoter of the ACC1 gene with the stronger GAL1 promoter and this resulted in enhanced production of resveratrol (4.3mg/L). Furthermore, when tyrosine was supplemented in the medium, the concentration of resveratrol increased up to 5.8mg/L. This result illustrates a possible strategy for developing metabolically engineered yeast strain for the economical production of resveratrol from cheap amino acids.</description><identifier>ISSN: 0141-0229</identifier><identifier>EISSN: 1879-0909</identifier><identifier>DOI: 10.1016/j.enzmictec.2012.06.005</identifier><identifier>PMID: 22883555</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>4-Coumarate:coenzyme A ligase (4CL1) ; ACC1 gene ; Acetyl-CoA carboxylase ; Acyltransferases - genetics ; Acyltransferases - metabolism ; Amino acids ; Ammonia ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis thaliana ; Arachis - enzymology ; Arachis - genetics ; Arachis hypogaea ; Biotechnology - methods ; Cinnamic acid ; Cinnamic acid 4-hydroxylase (C4H) ; Coenzyme A ; Coenzyme A Ligases - genetics ; Coenzyme A Ligases - metabolism ; Coumaric Acids - metabolism ; Enzymes ; Fermentation ; Galactose ; Genetic Engineering - methods ; Genetically engineered microorganisms ; Heart diseases ; p-Coumaric acid ; Phenylalanine ; Phenylalanine ammonia lyase (PAL) ; Phenylalanine Ammonia-Lyase - genetics ; Phenylalanine Ammonia-Lyase - metabolism ; Polyphenols ; Promoters ; Propionates ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Resveratrol ; Rhodosporidium toruloides ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Stilbene synthase (STS) ; Stilbenes - metabolism ; Trihydroxystilbene synthase ; Tyrosine ; Tyrosine - metabolism ; Vitaceae ; Wine</subject><ispartof>Enzyme and microbial technology, 2012-09, Vol.51 (4), p.211-216</ispartof><rights>2012 Elsevier Inc.</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-d1db7eed6750df1bd556bfd63bf6f1fc83e7439d9ed3ba1d58f4f17012c60c203</citedby><cites>FETCH-LOGICAL-c404t-d1db7eed6750df1bd556bfd63bf6f1fc83e7439d9ed3ba1d58f4f17012c60c203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22883555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, So-Yeon</creatorcontrib><creatorcontrib>Jung, Sang-Min</creatorcontrib><creatorcontrib>Kim, Myoung-Dong</creatorcontrib><creatorcontrib>Han, Nam Soo</creatorcontrib><creatorcontrib>Seo, Jin-Ho</creatorcontrib><title>Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae</title><title>Enzyme and microbial technology</title><addtitle>Enzyme Microb Technol</addtitle><description>► p-Coumaric acid of 10.5mg/L produced in recombinant yeast expressing PAL and C4H. ► Resveratrol of 3.4mg/L produced from tyrosine in yeast introducing four genes. ► Production of resveratrol improved to 4.3mg/L by increasing pool of malonyl-CoA. ► Addition of tyrosine led to increase in resveratrol produced up to 5.8mg/L.
Resveratrol, a polyphenol compound found in grape skins, has been proposed to account for the beneficial effects of red wine against heart disease. To produce resveratrol in Saccharomyces cerevisiae, four heterologous genes were introduced: the phenylalanine ammonia lyase gene from Rhodosporidium toruloides, the cinnamic acid 4-hydroxylase and 4-coumarate:coenzyme A ligase genes both from Arabidopsis thaliana, and the stilbene synthase gene from Arachis hypogaea. When this recombinant yeast was cultivated by batch fermentation in YP medium containing 2% galactose, it produced 2.6mg/L p-coumaric acid and 3.3mg/L resveratrol. In order to increase the pool of malonyl-CoA, a key precursor in resveratrol biosynthesis, the acetyl-CoA carboxylase (ACC1) gene was additionally overexpressed in the yeast by replacing the native promoter of the ACC1 gene with the stronger GAL1 promoter and this resulted in enhanced production of resveratrol (4.3mg/L). Furthermore, when tyrosine was supplemented in the medium, the concentration of resveratrol increased up to 5.8mg/L. This result illustrates a possible strategy for developing metabolically engineered yeast strain for the economical production of resveratrol from cheap amino acids.</description><subject>4-Coumarate:coenzyme A ligase (4CL1)</subject><subject>ACC1 gene</subject><subject>Acetyl-CoA carboxylase</subject><subject>Acyltransferases - genetics</subject><subject>Acyltransferases - metabolism</subject><subject>Amino acids</subject><subject>Ammonia</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Arachis - enzymology</subject><subject>Arachis - genetics</subject><subject>Arachis hypogaea</subject><subject>Biotechnology - methods</subject><subject>Cinnamic acid</subject><subject>Cinnamic acid 4-hydroxylase (C4H)</subject><subject>Coenzyme A</subject><subject>Coenzyme A Ligases - genetics</subject><subject>Coenzyme A Ligases - metabolism</subject><subject>Coumaric Acids - metabolism</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Galactose</subject><subject>Genetic Engineering - methods</subject><subject>Genetically engineered microorganisms</subject><subject>Heart diseases</subject><subject>p-Coumaric acid</subject><subject>Phenylalanine</subject><subject>Phenylalanine ammonia lyase (PAL)</subject><subject>Phenylalanine Ammonia-Lyase - genetics</subject><subject>Phenylalanine Ammonia-Lyase - metabolism</subject><subject>Polyphenols</subject><subject>Promoters</subject><subject>Propionates</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Resveratrol</subject><subject>Rhodosporidium toruloides</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Stilbene synthase (STS)</subject><subject>Stilbenes - metabolism</subject><subject>Trihydroxystilbene synthase</subject><subject>Tyrosine</subject><subject>Tyrosine - metabolism</subject><subject>Vitaceae</subject><subject>Wine</subject><issn>0141-0229</issn><issn>1879-0909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkc2LFDEQxYMo7rj6L2iOXrqtdD66-7gsfsGCgnoTQrpS0QzdnTXpGRj_erPMulc9FTx-r4p6j7FXAloBwrzZt7T-XiJuhG0HomvBtAD6EduJoR8bGGF8zHYglGig68YL9qyUPUAVFDxlF103DFJrvWPfP-fkD7jFtPIUeKZypOy2nGYeclr4dsqpxJV4XPlCm5vSHNHN84nT-qPqlMnzLw7xp6v4CalwrNoxlujoOXsS3Fzoxf28ZN_evf16_aG5-fT-4_XVTYMK1NZ44aeeyJtegw9i8lqbKXgjp2CCCDhI6pUc_UheTk54PQQVRF_fRgPYgbxkr897b3P6daCy2SUWpHl2K6VDsQLkYITq-vF_UKm0HFVf0f6MYo2gZAr2NsfF5VOF7F0Ldm8fWrB3LVgwtrZQnS_vjxymhfyD72_sFbg6A1RTOUbKtmCkFcnHTLhZn-I_j_wB64afZg</recordid><startdate>20120910</startdate><enddate>20120910</enddate><creator>Shin, So-Yeon</creator><creator>Jung, Sang-Min</creator><creator>Kim, Myoung-Dong</creator><creator>Han, Nam Soo</creator><creator>Seo, Jin-Ho</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20120910</creationdate><title>Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae</title><author>Shin, So-Yeon ; Jung, Sang-Min ; Kim, Myoung-Dong ; Han, Nam Soo ; Seo, Jin-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-d1db7eed6750df1bd556bfd63bf6f1fc83e7439d9ed3ba1d58f4f17012c60c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>4-Coumarate:coenzyme A ligase (4CL1)</topic><topic>ACC1 gene</topic><topic>Acetyl-CoA carboxylase</topic><topic>Acyltransferases - genetics</topic><topic>Acyltransferases - metabolism</topic><topic>Amino acids</topic><topic>Ammonia</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Arachis - enzymology</topic><topic>Arachis - genetics</topic><topic>Arachis hypogaea</topic><topic>Biotechnology - methods</topic><topic>Cinnamic acid</topic><topic>Cinnamic acid 4-hydroxylase (C4H)</topic><topic>Coenzyme A</topic><topic>Coenzyme A Ligases - genetics</topic><topic>Coenzyme A Ligases - metabolism</topic><topic>Coumaric Acids - metabolism</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Galactose</topic><topic>Genetic Engineering - methods</topic><topic>Genetically engineered microorganisms</topic><topic>Heart diseases</topic><topic>p-Coumaric acid</topic><topic>Phenylalanine</topic><topic>Phenylalanine ammonia lyase (PAL)</topic><topic>Phenylalanine Ammonia-Lyase - genetics</topic><topic>Phenylalanine Ammonia-Lyase - metabolism</topic><topic>Polyphenols</topic><topic>Promoters</topic><topic>Propionates</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Resveratrol</topic><topic>Rhodosporidium toruloides</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Stilbene synthase (STS)</topic><topic>Stilbenes - metabolism</topic><topic>Trihydroxystilbene synthase</topic><topic>Tyrosine</topic><topic>Tyrosine - metabolism</topic><topic>Vitaceae</topic><topic>Wine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, So-Yeon</creatorcontrib><creatorcontrib>Jung, Sang-Min</creatorcontrib><creatorcontrib>Kim, Myoung-Dong</creatorcontrib><creatorcontrib>Han, Nam Soo</creatorcontrib><creatorcontrib>Seo, Jin-Ho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Enzyme and microbial technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, So-Yeon</au><au>Jung, Sang-Min</au><au>Kim, Myoung-Dong</au><au>Han, Nam Soo</au><au>Seo, Jin-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae</atitle><jtitle>Enzyme and microbial technology</jtitle><addtitle>Enzyme Microb Technol</addtitle><date>2012-09-10</date><risdate>2012</risdate><volume>51</volume><issue>4</issue><spage>211</spage><epage>216</epage><pages>211-216</pages><issn>0141-0229</issn><eissn>1879-0909</eissn><abstract>► p-Coumaric acid of 10.5mg/L produced in recombinant yeast expressing PAL and C4H. ► Resveratrol of 3.4mg/L produced from tyrosine in yeast introducing four genes. ► Production of resveratrol improved to 4.3mg/L by increasing pool of malonyl-CoA. ► Addition of tyrosine led to increase in resveratrol produced up to 5.8mg/L.
Resveratrol, a polyphenol compound found in grape skins, has been proposed to account for the beneficial effects of red wine against heart disease. To produce resveratrol in Saccharomyces cerevisiae, four heterologous genes were introduced: the phenylalanine ammonia lyase gene from Rhodosporidium toruloides, the cinnamic acid 4-hydroxylase and 4-coumarate:coenzyme A ligase genes both from Arabidopsis thaliana, and the stilbene synthase gene from Arachis hypogaea. When this recombinant yeast was cultivated by batch fermentation in YP medium containing 2% galactose, it produced 2.6mg/L p-coumaric acid and 3.3mg/L resveratrol. In order to increase the pool of malonyl-CoA, a key precursor in resveratrol biosynthesis, the acetyl-CoA carboxylase (ACC1) gene was additionally overexpressed in the yeast by replacing the native promoter of the ACC1 gene with the stronger GAL1 promoter and this resulted in enhanced production of resveratrol (4.3mg/L). Furthermore, when tyrosine was supplemented in the medium, the concentration of resveratrol increased up to 5.8mg/L. This result illustrates a possible strategy for developing metabolically engineered yeast strain for the economical production of resveratrol from cheap amino acids.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>22883555</pmid><doi>10.1016/j.enzmictec.2012.06.005</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0229 |
ispartof | Enzyme and microbial technology, 2012-09, Vol.51 (4), p.211-216 |
issn | 0141-0229 1879-0909 |
language | eng |
recordid | cdi_proquest_miscellaneous_1038614279 |
source | Elsevier |
subjects | 4-Coumarate:coenzyme A ligase (4CL1) ACC1 gene Acetyl-CoA carboxylase Acyltransferases - genetics Acyltransferases - metabolism Amino acids Ammonia Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis thaliana Arachis - enzymology Arachis - genetics Arachis hypogaea Biotechnology - methods Cinnamic acid Cinnamic acid 4-hydroxylase (C4H) Coenzyme A Coenzyme A Ligases - genetics Coenzyme A Ligases - metabolism Coumaric Acids - metabolism Enzymes Fermentation Galactose Genetic Engineering - methods Genetically engineered microorganisms Heart diseases p-Coumaric acid Phenylalanine Phenylalanine ammonia lyase (PAL) Phenylalanine Ammonia-Lyase - genetics Phenylalanine Ammonia-Lyase - metabolism Polyphenols Promoters Propionates Recombinant Proteins - genetics Recombinant Proteins - metabolism Resveratrol Rhodosporidium toruloides Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Stilbene synthase (STS) Stilbenes - metabolism Trihydroxystilbene synthase Tyrosine Tyrosine - metabolism Vitaceae Wine |
title | Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20resveratrol%20from%20tyrosine%20in%20metabolically%20engineered%20Saccharomyces%20cerevisiae&rft.jtitle=Enzyme%20and%20microbial%20technology&rft.au=Shin,%20So-Yeon&rft.date=2012-09-10&rft.volume=51&rft.issue=4&rft.spage=211&rft.epage=216&rft.pages=211-216&rft.issn=0141-0229&rft.eissn=1879-0909&rft_id=info:doi/10.1016/j.enzmictec.2012.06.005&rft_dat=%3Cproquest_cross%3E1033453947%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-d1db7eed6750df1bd556bfd63bf6f1fc83e7439d9ed3ba1d58f4f17012c60c203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1033453947&rft_id=info:pmid/22883555&rfr_iscdi=true |