Loading…

Chemical Composition, Antimicrobial, Antioxidant and Cytotoxic Activity of Essential Oils of Plectranthus cylindraceus and Meriandra benghalensis from Yemen

The chemical composition, antimicrobial, antioxidant and cytotoxic activities of the essential oils isolated from the leaves of Plectranthus cylindraceus Hoechst. ex. Benth. (EOPC) and Meriandra benghalensis (Roxb.) Benth. (EOMB) were investigated. Sixteen compounds were identified in P. cylindraceu...

Full description

Saved in:
Bibliographic Details
Published in:Natural product communications 2012-08, Vol.7 (8), p.1099-1102
Main Authors: Ali, Nasser A. Awadh, Wurster, Martina, Denkert, Annika, Arnold, Norbert, Fadail, Iman, Al-Didamony, Gamal, Lindequist, Ulrike, Wessjohann, Ludger, Setzer, William N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The chemical composition, antimicrobial, antioxidant and cytotoxic activities of the essential oils isolated from the leaves of Plectranthus cylindraceus Hoechst. ex. Benth. (EOPC) and Meriandra benghalensis (Roxb.) Benth. (EOMB) were investigated. Sixteen compounds were identified in P. cylindraceus oil representing 94.5% of the oil content with thymol (68.5%), terpinolene (5.3%), β-selinene (4.7%), β-caryophyllene (4.0%), δ-cadinol (2.1%), and ar-curcumene (1.7%) as the major compounds. In M. benghalensis oil, 12 compounds were identified, which made up 82.0% of the total oil. The most abundant constituents were camphor (43.6%), 1,8-cineole (10.7%), α-eudesmol (5.8%), caryophyllene oxide (5.8%), camphene (5.3%) and borneol (3.4%). The antimicrobial activities of both oils were evaluated against five microorganisms with the disc diffusion test, the broth micro-dilution method and a semiquantitative bioautographic test. The most sensitive microorganisms for P. cylindraceus oil were S. aureus, B. subtilis, and C. albicans with inhibition zones of 38, 42, and 43 mm and MIC values of 0.39, 0.18, and, 0.18 μL/mL, respectively. M. benghalensis oil showed weak to moderate activity against the tested microorganisms. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay was employed to study the potential antioxidant activities of both oils. The antioxidant activity of P. cylindraceus oil (IC50 34.5 μg/mL) appeared to be higher than that of M. benghalensis oil (IC50 935 μg/mL). At a concentration of 100 μg/mL, EOMB showed a stronger cytotoxic activity, with growth inhibition of 71% against HT29 tumor cells, than EOPC (18%).
ISSN:1934-578X
1555-9475
DOI:10.1177/1934578X1200700834