Loading…
The effect of skin entry site, needle angulation and soft tissue compression on simulated antegrade and retrograde femoral arterial punctures: an anatomical study using Cartesian co-ordinates derived from CT angiography
Purpose Safe femoral arterial access is an important procedural step in many interventional procedures and variations of the anatomy of the region are well known. The aim of this study was to redefine the anatomy relevant to the femoral arterial puncture and simulate the results of different punctur...
Saved in:
Published in: | Surgical and radiologic anatomy (English ed.) 2012-10, Vol.34 (8), p.751-755 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Safe femoral arterial access is an important procedural step in many interventional procedures and variations of the anatomy of the region are well known. The aim of this study was to redefine the anatomy relevant to the femoral arterial puncture and simulate the results of different puncture techniques.
Methods
A total of 100 consecutive CT angiograms were used and regions of interest were labelled giving Cartesian co-ordinates which allowed determination of arterial puncture site relative to skin puncture site, the bifurcation and inguinal ligament (ING).
Results
The ING was lower than defined by bony landmarks by 16.6 mm. The femoral bifurcation was above the inferior aspect of the femoral head in 51% and entirely medial to the femoral head in 1%. Simulated antegrade and retrograde punctures with dogmatic technique, using a 45-degree angle would result in a significant rate of high and low arterial punctures. Simulated 50% soft tissue compression also resulted in decreased rate of high retrograde punctures but an increased rate of low antegrade punctures.
Conclusions
Use of dogmatic access techniques is predicted to result in an unacceptably high rate of dangerous high and low punctures. Puncture angle and geometry can be severely affected by patient obesity. The combination of fluoroscopy to identify entry point, ultrasound-guidance to identify the femoral bifurcation and soft tissue compression to improve puncture geometry are critical for safe femoral arterial access. |
---|---|
ISSN: | 0930-1038 1279-8517 |
DOI: | 10.1007/s00276-011-0880-0 |