Loading…
Topological phase transition in layered GaS and GaSe
By fully relativistic first principles calculations, we predict that appropriate strain engineering of layered GaX (X=S, Se) leads to a new class of three-dimensional topological insulators with an excitation gap of up to 135 meV. Our results provide a new perspective on the formation of three-dimen...
Saved in:
Published in: | Physical review letters 2012-06, Vol.108 (26), p.266805-266805, Article 266805 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By fully relativistic first principles calculations, we predict that appropriate strain engineering of layered GaX (X=S, Se) leads to a new class of three-dimensional topological insulators with an excitation gap of up to 135 meV. Our results provide a new perspective on the formation of three-dimensional topological insulators. Band inversion can be induced by strain only, without considering any spin-orbit coupling. The latter, however, is indispensable for the formation of local band gaps at the crossing points of the inverted bands. Our study indicates that three-dimensional topological insulators can also be realized in materials which comprise light elements only. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.108.266805 |