Loading…
Topological phase transition in layered GaS and GaSe
By fully relativistic first principles calculations, we predict that appropriate strain engineering of layered GaX (X=S, Se) leads to a new class of three-dimensional topological insulators with an excitation gap of up to 135 meV. Our results provide a new perspective on the formation of three-dimen...
Saved in:
Published in: | Physical review letters 2012-06, Vol.108 (26), p.266805-266805, Article 266805 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c311t-b812a9598daa22aeb7111c6caf0e80259e03034f321cc9e5419a3a3dccf656613 |
---|---|
cites | cdi_FETCH-LOGICAL-c311t-b812a9598daa22aeb7111c6caf0e80259e03034f321cc9e5419a3a3dccf656613 |
container_end_page | 266805 |
container_issue | 26 |
container_start_page | 266805 |
container_title | Physical review letters |
container_volume | 108 |
creator | Zhu, Zhiyong Cheng, Yingchun Schwingenschlögl, Udo |
description | By fully relativistic first principles calculations, we predict that appropriate strain engineering of layered GaX (X=S, Se) leads to a new class of three-dimensional topological insulators with an excitation gap of up to 135 meV. Our results provide a new perspective on the formation of three-dimensional topological insulators. Band inversion can be induced by strain only, without considering any spin-orbit coupling. The latter, however, is indispensable for the formation of local band gaps at the crossing points of the inverted bands. Our study indicates that three-dimensional topological insulators can also be realized in materials which comprise light elements only. |
doi_str_mv | 10.1103/PhysRevLett.108.266805 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1080614009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080614009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-b812a9598daa22aeb7111c6caf0e80259e03034f321cc9e5419a3a3dccf656613</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRbK3-hZKjl9SZ3WSbPUrRKhQUrecw3UxsJM3G3VTovze1VYSBd3lvZt4nxBhhggjq5nm9Cy_8teCumyBkE6l1BumJGCJMTTxFTE7FEEBhbACmA3ERwgcAoNTZuRhIBZD2MxTJ0rWudu-VpTpq1xQ46jw1oeoq10RVE9W0Y89FNKfXiJof5UtxVlId-OqoI_F2f7ecPcSLp_nj7HYRW4XYxasMJZnUZAWRlMSr_i202lIJnIFMDYMClZRKorWG0wQNKVKFtaVOtUY1EteHva13n1sOXb6pguW6pobdNuR9cdCYAJjeqg9W610Insu89dWG_K435Xti-T9i-2B-INYHx8cb29WGi7_YLyL1DTMvaJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080614009</pqid></control><display><type>article</type><title>Topological phase transition in layered GaS and GaSe</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Zhu, Zhiyong ; Cheng, Yingchun ; Schwingenschlögl, Udo</creator><creatorcontrib>Zhu, Zhiyong ; Cheng, Yingchun ; Schwingenschlögl, Udo</creatorcontrib><description>By fully relativistic first principles calculations, we predict that appropriate strain engineering of layered GaX (X=S, Se) leads to a new class of three-dimensional topological insulators with an excitation gap of up to 135 meV. Our results provide a new perspective on the formation of three-dimensional topological insulators. Band inversion can be induced by strain only, without considering any spin-orbit coupling. The latter, however, is indispensable for the formation of local band gaps at the crossing points of the inverted bands. Our study indicates that three-dimensional topological insulators can also be realized in materials which comprise light elements only.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.108.266805</identifier><identifier>PMID: 23005005</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2012-06, Vol.108 (26), p.266805-266805, Article 266805</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-b812a9598daa22aeb7111c6caf0e80259e03034f321cc9e5419a3a3dccf656613</citedby><cites>FETCH-LOGICAL-c311t-b812a9598daa22aeb7111c6caf0e80259e03034f321cc9e5419a3a3dccf656613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23005005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Zhiyong</creatorcontrib><creatorcontrib>Cheng, Yingchun</creatorcontrib><creatorcontrib>Schwingenschlögl, Udo</creatorcontrib><title>Topological phase transition in layered GaS and GaSe</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>By fully relativistic first principles calculations, we predict that appropriate strain engineering of layered GaX (X=S, Se) leads to a new class of three-dimensional topological insulators with an excitation gap of up to 135 meV. Our results provide a new perspective on the formation of three-dimensional topological insulators. Band inversion can be induced by strain only, without considering any spin-orbit coupling. The latter, however, is indispensable for the formation of local band gaps at the crossing points of the inverted bands. Our study indicates that three-dimensional topological insulators can also be realized in materials which comprise light elements only.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLw0AQhRdRbK3-hZKjl9SZ3WSbPUrRKhQUrecw3UxsJM3G3VTovze1VYSBd3lvZt4nxBhhggjq5nm9Cy_8teCumyBkE6l1BumJGCJMTTxFTE7FEEBhbACmA3ERwgcAoNTZuRhIBZD2MxTJ0rWudu-VpTpq1xQ46jw1oeoq10RVE9W0Y89FNKfXiJof5UtxVlId-OqoI_F2f7ecPcSLp_nj7HYRW4XYxasMJZnUZAWRlMSr_i202lIJnIFMDYMClZRKorWG0wQNKVKFtaVOtUY1EteHva13n1sOXb6pguW6pobdNuR9cdCYAJjeqg9W610Insu89dWG_K435Xti-T9i-2B-INYHx8cb29WGi7_YLyL1DTMvaJU</recordid><startdate>20120629</startdate><enddate>20120629</enddate><creator>Zhu, Zhiyong</creator><creator>Cheng, Yingchun</creator><creator>Schwingenschlögl, Udo</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120629</creationdate><title>Topological phase transition in layered GaS and GaSe</title><author>Zhu, Zhiyong ; Cheng, Yingchun ; Schwingenschlögl, Udo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-b812a9598daa22aeb7111c6caf0e80259e03034f321cc9e5419a3a3dccf656613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhiyong</creatorcontrib><creatorcontrib>Cheng, Yingchun</creatorcontrib><creatorcontrib>Schwingenschlögl, Udo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhiyong</au><au>Cheng, Yingchun</au><au>Schwingenschlögl, Udo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological phase transition in layered GaS and GaSe</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-06-29</date><risdate>2012</risdate><volume>108</volume><issue>26</issue><spage>266805</spage><epage>266805</epage><pages>266805-266805</pages><artnum>266805</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>By fully relativistic first principles calculations, we predict that appropriate strain engineering of layered GaX (X=S, Se) leads to a new class of three-dimensional topological insulators with an excitation gap of up to 135 meV. Our results provide a new perspective on the formation of three-dimensional topological insulators. Band inversion can be induced by strain only, without considering any spin-orbit coupling. The latter, however, is indispensable for the formation of local band gaps at the crossing points of the inverted bands. Our study indicates that three-dimensional topological insulators can also be realized in materials which comprise light elements only.</abstract><cop>United States</cop><pmid>23005005</pmid><doi>10.1103/PhysRevLett.108.266805</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2012-06, Vol.108 (26), p.266805-266805, Article 266805 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1080614009 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Topological phase transition in layered GaS and GaSe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20phase%20transition%20in%20layered%20GaS%20and%20GaSe&rft.jtitle=Physical%20review%20letters&rft.au=Zhu,%20Zhiyong&rft.date=2012-06-29&rft.volume=108&rft.issue=26&rft.spage=266805&rft.epage=266805&rft.pages=266805-266805&rft.artnum=266805&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.108.266805&rft_dat=%3Cproquest_cross%3E1080614009%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c311t-b812a9598daa22aeb7111c6caf0e80259e03034f321cc9e5419a3a3dccf656613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1080614009&rft_id=info:pmid/23005005&rfr_iscdi=true |