Loading…

Directed transport in a classical lattice with a high-frequency driving

We analyze the dynamics of a classical particle in a spatially periodic potential under the influence of a periodic in time uniform force. It was shown by S. Flach and coworkers [Phys. Rev. Lett. 84, 2358 (2000)] that despite zero average force, directed transport is possible in the system. Asymptot...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-07, Vol.86 (1 Pt 2), p.016206-016206, Article 016206
Main Authors: Itin, A P, Neishtadt, A I
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c303t-851cfd6ea691700c0f0d9bf039f39a9a42317551e2e5a7149ffeca7dff21a9403
cites cdi_FETCH-LOGICAL-c303t-851cfd6ea691700c0f0d9bf039f39a9a42317551e2e5a7149ffeca7dff21a9403
container_end_page 016206
container_issue 1 Pt 2
container_start_page 016206
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 86
creator Itin, A P
Neishtadt, A I
description We analyze the dynamics of a classical particle in a spatially periodic potential under the influence of a periodic in time uniform force. It was shown by S. Flach and coworkers [Phys. Rev. Lett. 84, 2358 (2000)] that despite zero average force, directed transport is possible in the system. Asymptotic description of this phenomenon for the case of slow driving was developed by X. Leoncini and coworkers [Phys. Rev. E 79, 026213 (2009)]. Here we consider the case of fast driving using the canonical perturbation theory. An asymptotic formula is derived for the average drift velocity as a function of the system parameters and the driving law. We show that directed transport arises in an effective Hamiltonian that does not possess chaotic dynamics, thereby clarifying the relation between chaos and transport in the system. Sufficient conditions for transport are derived.
doi_str_mv 10.1103/PhysRevE.86.016206
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1080616170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080616170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-851cfd6ea691700c0f0d9bf039f39a9a42317551e2e5a7149ffeca7dff21a9403</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMotlZfwIPs0cvWSbKb3Ryl1ioUFNHzkmYn3ch2tyZppW9vSltPMzDf_zN8hNxSGFMK_OG92fkP3E7HpRgDFQzEGRnSPIeU8UKc73cuU17k-YBcef8NwBkvs0syYBwgcmJIZk_WoQ5YJ8Gpzq97FxLbJSrRrfLeatUmrQrBakx-bWjiobHLJjUOfzbY6V1SO7u13fKaXBjVerw5zhH5ep5-Tl7S-dvsdfI4TzUHHtIyp9rUApWQtADQYKCWCwNcGi6VVBnjNP5LkWGuCppJY1CrojaGUSUz4CNyf-hduz5-4EO1sl5j26oO-42vKJQgqIjlEWUHVLvee4emWju7Um4XoWovsDoJrEpRHQTG0N2xf7NYYf0fORnjf26SbZ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080616170</pqid></control><display><type>article</type><title>Directed transport in a classical lattice with a high-frequency driving</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Itin, A P ; Neishtadt, A I</creator><creatorcontrib>Itin, A P ; Neishtadt, A I</creatorcontrib><description>We analyze the dynamics of a classical particle in a spatially periodic potential under the influence of a periodic in time uniform force. It was shown by S. Flach and coworkers [Phys. Rev. Lett. 84, 2358 (2000)] that despite zero average force, directed transport is possible in the system. Asymptotic description of this phenomenon for the case of slow driving was developed by X. Leoncini and coworkers [Phys. Rev. E 79, 026213 (2009)]. Here we consider the case of fast driving using the canonical perturbation theory. An asymptotic formula is derived for the average drift velocity as a function of the system parameters and the driving law. We show that directed transport arises in an effective Hamiltonian that does not possess chaotic dynamics, thereby clarifying the relation between chaos and transport in the system. Sufficient conditions for transport are derived.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.86.016206</identifier><identifier>PMID: 23005506</identifier><language>eng</language><publisher>United States</publisher><subject>Computer Simulation ; Models, Theoretical ; Motion ; Stress, Mechanical</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-07, Vol.86 (1 Pt 2), p.016206-016206, Article 016206</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-851cfd6ea691700c0f0d9bf039f39a9a42317551e2e5a7149ffeca7dff21a9403</citedby><cites>FETCH-LOGICAL-c303t-851cfd6ea691700c0f0d9bf039f39a9a42317551e2e5a7149ffeca7dff21a9403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23005506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Itin, A P</creatorcontrib><creatorcontrib>Neishtadt, A I</creatorcontrib><title>Directed transport in a classical lattice with a high-frequency driving</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We analyze the dynamics of a classical particle in a spatially periodic potential under the influence of a periodic in time uniform force. It was shown by S. Flach and coworkers [Phys. Rev. Lett. 84, 2358 (2000)] that despite zero average force, directed transport is possible in the system. Asymptotic description of this phenomenon for the case of slow driving was developed by X. Leoncini and coworkers [Phys. Rev. E 79, 026213 (2009)]. Here we consider the case of fast driving using the canonical perturbation theory. An asymptotic formula is derived for the average drift velocity as a function of the system parameters and the driving law. We show that directed transport arises in an effective Hamiltonian that does not possess chaotic dynamics, thereby clarifying the relation between chaos and transport in the system. Sufficient conditions for transport are derived.</description><subject>Computer Simulation</subject><subject>Models, Theoretical</subject><subject>Motion</subject><subject>Stress, Mechanical</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEQhoMotlZfwIPs0cvWSbKb3Ryl1ioUFNHzkmYn3ch2tyZppW9vSltPMzDf_zN8hNxSGFMK_OG92fkP3E7HpRgDFQzEGRnSPIeU8UKc73cuU17k-YBcef8NwBkvs0syYBwgcmJIZk_WoQ5YJ8Gpzq97FxLbJSrRrfLeatUmrQrBakx-bWjiobHLJjUOfzbY6V1SO7u13fKaXBjVerw5zhH5ep5-Tl7S-dvsdfI4TzUHHtIyp9rUApWQtADQYKCWCwNcGi6VVBnjNP5LkWGuCppJY1CrojaGUSUz4CNyf-hduz5-4EO1sl5j26oO-42vKJQgqIjlEWUHVLvee4emWju7Um4XoWovsDoJrEpRHQTG0N2xf7NYYf0fORnjf26SbZ8</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Itin, A P</creator><creator>Neishtadt, A I</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201207</creationdate><title>Directed transport in a classical lattice with a high-frequency driving</title><author>Itin, A P ; Neishtadt, A I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-851cfd6ea691700c0f0d9bf039f39a9a42317551e2e5a7149ffeca7dff21a9403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer Simulation</topic><topic>Models, Theoretical</topic><topic>Motion</topic><topic>Stress, Mechanical</topic><toplevel>online_resources</toplevel><creatorcontrib>Itin, A P</creatorcontrib><creatorcontrib>Neishtadt, A I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Itin, A P</au><au>Neishtadt, A I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed transport in a classical lattice with a high-frequency driving</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2012-07</date><risdate>2012</risdate><volume>86</volume><issue>1 Pt 2</issue><spage>016206</spage><epage>016206</epage><pages>016206-016206</pages><artnum>016206</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We analyze the dynamics of a classical particle in a spatially periodic potential under the influence of a periodic in time uniform force. It was shown by S. Flach and coworkers [Phys. Rev. Lett. 84, 2358 (2000)] that despite zero average force, directed transport is possible in the system. Asymptotic description of this phenomenon for the case of slow driving was developed by X. Leoncini and coworkers [Phys. Rev. E 79, 026213 (2009)]. Here we consider the case of fast driving using the canonical perturbation theory. An asymptotic formula is derived for the average drift velocity as a function of the system parameters and the driving law. We show that directed transport arises in an effective Hamiltonian that does not possess chaotic dynamics, thereby clarifying the relation between chaos and transport in the system. Sufficient conditions for transport are derived.</abstract><cop>United States</cop><pmid>23005506</pmid><doi>10.1103/PhysRevE.86.016206</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2012-07, Vol.86 (1 Pt 2), p.016206-016206, Article 016206
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1080616170
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Computer Simulation
Models, Theoretical
Motion
Stress, Mechanical
title Directed transport in a classical lattice with a high-frequency driving
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20transport%20in%20a%20classical%20lattice%20with%20a%20high-frequency%20driving&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Itin,%20A%20P&rft.date=2012-07&rft.volume=86&rft.issue=1%20Pt%202&rft.spage=016206&rft.epage=016206&rft.pages=016206-016206&rft.artnum=016206&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.86.016206&rft_dat=%3Cproquest_cross%3E1080616170%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c303t-851cfd6ea691700c0f0d9bf039f39a9a42317551e2e5a7149ffeca7dff21a9403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1080616170&rft_id=info:pmid/23005506&rfr_iscdi=true