Loading…

Electric-field-induced crack patterns: experiments and simulation

We report a study of crack patterns formed in laponite gel drying in an electric field. The sample dries in a circular petri dish and the field is radial, acting inward or outward. A system of radial cracks forms in the setup with the center terminal positive, while predominantly cross-radial cracks...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2012-07, Vol.86 (1 Pt 2), p.016114-016114, Article 016114
Main Authors: Khatun, Tajkera, Choudhury, Moutushi Dutta, Dutta, Tapati, Tarafdar, Sujata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a study of crack patterns formed in laponite gel drying in an electric field. The sample dries in a circular petri dish and the field is radial, acting inward or outward. A system of radial cracks forms in the setup with the center terminal positive, while predominantly cross-radial cracks form when the center is at a negative potential. The laponite accumulates near the negative terminal making the layer thicker at this end. A spring model on a square lattice is used to simulate the desiccation crack formation, with an additional radial force acting due to the electric field. With the radial force acting outward, radial cracks form and for the reversed field cross-radial cracks form. This conforms to the observation that laponite platelets become effectively positive due to overcharging and are attracted towards the negative terminal.
ISSN:1539-3755
1550-2376
DOI:10.1103/physreve.86.016114