Loading…

Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population

Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology 2012-10, Vol.21 (19), p.4672-4680
Main Authors: ZAPIOLA, MARÍA L., MALLORY-SMITH, CAROL A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003
cites cdi_FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003
container_end_page 4680
container_issue 19
container_start_page 4672
container_title Molecular ecology
container_volume 21
creator ZAPIOLA, MARÍA L.
MALLORY-SMITH, CAROL A.
description Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence of the transgene in the environment (Warwick et al. 2008). Creeping bentgrass (Agrostis stolonifera L.), a turfgrass species widely used on golf courses, has been genetically engineered to be resistant to glyphosate, a nonselective herbicide. Outcrossing species, such as creeping bentgrass (CB), which have several compatible species, have greater chances for gene escape and spontaneous hybridization (i.e. natural, unassisted sexual reproduction between taxa in the field), which challenges transgene containment. Several authors have emphasized the need for evidence of spontaneous hybridization to infer the potential for gene flow (Armstrong et al. 2005). Here we report that a transgenic intergeneric hybrid has been produced as result of spontaneous hybridization of a feral‐regulated transgenic pollen receptor (CB) and a nontransgenic pollen donor (rabbitfoot grass, RF, Polypogon monspeliensis (L.) Desf.). We identified an off‐type transgenic seedling and confirmed it to be CB × RF intergeneric hybrid. This first report of a transgenic intergeneric hybrid produced in situ with a regulated transgenic event demonstrates the importance of considering all possible avenues for transgene spread at the landscape level before planting a regulated transgenic crop in the field. Spontaneous hybridization adds a level of complexity to transgene monitoring, containment, mitigation and remediation programmes. See also the Perspective by Snow
doi_str_mv 10.1111/j.1365-294X.2012.05627.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1080884452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080884452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0EokvhLyBLXLgk2I4dx0gc0NItSF24UJWb5cSTrZdsktoJ3f332GzZQ0_1xdbM98aj9xDClOQ0ng_bnBalyJjiv3JGKMuJKJnM98_Q4tR4jhZElSyjpCrO0KsQtoTQggnxEp0xVjJBpVyg3dIPIbh-g6dbwNb9cRY-4g30gNtuuMejH-zcQMCun8CnuncNvj3U3tlYwy140-HJmz7EZmw1HmBM82rop403IeBxGOfOTG7oX6MXrekCvHm4z9H16uLn8mt29ePy2_LzVdbwQsiMM96UikspwQojFBDgDZe1EGCsNI2qgNdUMkuMAqvatrCMthCflaSKkOIcvT_OjevfzRAmvXOhga4zPQxz0NETUlWcCxbRd4_Q7TD7Pm4XKck5I4olqjpSTbLLQ6tH73bGHyKkUyR6q5PzOjmvUyT6XyR6H6VvHz6Y6x3Yk_B_BhH4dATuXQeHJw_W64tlekV9dtS7MMH-pDf-ty5lIYW--X6pBV2t119Wpa6Kv1IPqtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1074420922</pqid></control><display><type>article</type><title>Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population</title><source>Wiley</source><creator>ZAPIOLA, MARÍA L. ; MALLORY-SMITH, CAROL A.</creator><creatorcontrib>ZAPIOLA, MARÍA L. ; MALLORY-SMITH, CAROL A.</creatorcontrib><description>Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence of the transgene in the environment (Warwick et al. 2008). Creeping bentgrass (Agrostis stolonifera L.), a turfgrass species widely used on golf courses, has been genetically engineered to be resistant to glyphosate, a nonselective herbicide. Outcrossing species, such as creeping bentgrass (CB), which have several compatible species, have greater chances for gene escape and spontaneous hybridization (i.e. natural, unassisted sexual reproduction between taxa in the field), which challenges transgene containment. Several authors have emphasized the need for evidence of spontaneous hybridization to infer the potential for gene flow (Armstrong et al. 2005). Here we report that a transgenic intergeneric hybrid has been produced as result of spontaneous hybridization of a feral‐regulated transgenic pollen receptor (CB) and a nontransgenic pollen donor (rabbitfoot grass, RF, Polypogon monspeliensis (L.) Desf.). We identified an off‐type transgenic seedling and confirmed it to be CB × RF intergeneric hybrid. This first report of a transgenic intergeneric hybrid produced in situ with a regulated transgenic event demonstrates the importance of considering all possible avenues for transgene spread at the landscape level before planting a regulated transgenic crop in the field. Spontaneous hybridization adds a level of complexity to transgene monitoring, containment, mitigation and remediation programmes. See also the Perspective by Snow</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/j.1365-294X.2012.05627.x</identifier><identifier>PMID: 22625177</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Agropogon littoralis ; Agrostis - genetics ; Agrostis stolonifera ; DNA Primers - genetics ; DNA, Plant - genetics ; Gene Flow ; Genes ; Genetic Markers ; Glycine - analogs &amp; derivatives ; Glyphosate ; Grasses ; herbicide resistance ; Herbicide Resistance - genetics ; Hybridization ; Hybridization, Genetic ; Molecular Sequence Data ; Plant populations ; Plants, Genetically Modified - genetics ; Polypogon monspeliensis ; Sequence Analysis, DNA ; spontaneous hybridization ; Transgenes ; transgenic crop ; Transgenic plants</subject><ispartof>Molecular ecology, 2012-10, Vol.21 (19), p.4672-4680</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2012 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003</citedby><cites>FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22625177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ZAPIOLA, MARÍA L.</creatorcontrib><creatorcontrib>MALLORY-SMITH, CAROL A.</creatorcontrib><title>Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence of the transgene in the environment (Warwick et al. 2008). Creeping bentgrass (Agrostis stolonifera L.), a turfgrass species widely used on golf courses, has been genetically engineered to be resistant to glyphosate, a nonselective herbicide. Outcrossing species, such as creeping bentgrass (CB), which have several compatible species, have greater chances for gene escape and spontaneous hybridization (i.e. natural, unassisted sexual reproduction between taxa in the field), which challenges transgene containment. Several authors have emphasized the need for evidence of spontaneous hybridization to infer the potential for gene flow (Armstrong et al. 2005). Here we report that a transgenic intergeneric hybrid has been produced as result of spontaneous hybridization of a feral‐regulated transgenic pollen receptor (CB) and a nontransgenic pollen donor (rabbitfoot grass, RF, Polypogon monspeliensis (L.) Desf.). We identified an off‐type transgenic seedling and confirmed it to be CB × RF intergeneric hybrid. This first report of a transgenic intergeneric hybrid produced in situ with a regulated transgenic event demonstrates the importance of considering all possible avenues for transgene spread at the landscape level before planting a regulated transgenic crop in the field. Spontaneous hybridization adds a level of complexity to transgene monitoring, containment, mitigation and remediation programmes. See also the Perspective by Snow</description><subject>Agropogon littoralis</subject><subject>Agrostis - genetics</subject><subject>Agrostis stolonifera</subject><subject>DNA Primers - genetics</subject><subject>DNA, Plant - genetics</subject><subject>Gene Flow</subject><subject>Genes</subject><subject>Genetic Markers</subject><subject>Glycine - analogs &amp; derivatives</subject><subject>Glyphosate</subject><subject>Grasses</subject><subject>herbicide resistance</subject><subject>Herbicide Resistance - genetics</subject><subject>Hybridization</subject><subject>Hybridization, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Plant populations</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Polypogon monspeliensis</subject><subject>Sequence Analysis, DNA</subject><subject>spontaneous hybridization</subject><subject>Transgenes</subject><subject>transgenic crop</subject><subject>Transgenic plants</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS0EokvhLyBLXLgk2I4dx0gc0NItSF24UJWb5cSTrZdsktoJ3f332GzZQ0_1xdbM98aj9xDClOQ0ng_bnBalyJjiv3JGKMuJKJnM98_Q4tR4jhZElSyjpCrO0KsQtoTQggnxEp0xVjJBpVyg3dIPIbh-g6dbwNb9cRY-4g30gNtuuMejH-zcQMCun8CnuncNvj3U3tlYwy140-HJmz7EZmw1HmBM82rop403IeBxGOfOTG7oX6MXrekCvHm4z9H16uLn8mt29ePy2_LzVdbwQsiMM96UikspwQojFBDgDZe1EGCsNI2qgNdUMkuMAqvatrCMthCflaSKkOIcvT_OjevfzRAmvXOhga4zPQxz0NETUlWcCxbRd4_Q7TD7Pm4XKck5I4olqjpSTbLLQ6tH73bGHyKkUyR6q5PzOjmvUyT6XyR6H6VvHz6Y6x3Yk_B_BhH4dATuXQeHJw_W64tlekV9dtS7MMH-pDf-ty5lIYW--X6pBV2t119Wpa6Kv1IPqtY</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>ZAPIOLA, MARÍA L.</creator><creator>MALLORY-SMITH, CAROL A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201210</creationdate><title>Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population</title><author>ZAPIOLA, MARÍA L. ; MALLORY-SMITH, CAROL A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agropogon littoralis</topic><topic>Agrostis - genetics</topic><topic>Agrostis stolonifera</topic><topic>DNA Primers - genetics</topic><topic>DNA, Plant - genetics</topic><topic>Gene Flow</topic><topic>Genes</topic><topic>Genetic Markers</topic><topic>Glycine - analogs &amp; derivatives</topic><topic>Glyphosate</topic><topic>Grasses</topic><topic>herbicide resistance</topic><topic>Herbicide Resistance - genetics</topic><topic>Hybridization</topic><topic>Hybridization, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Plant populations</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Polypogon monspeliensis</topic><topic>Sequence Analysis, DNA</topic><topic>spontaneous hybridization</topic><topic>Transgenes</topic><topic>transgenic crop</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZAPIOLA, MARÍA L.</creatorcontrib><creatorcontrib>MALLORY-SMITH, CAROL A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZAPIOLA, MARÍA L.</au><au>MALLORY-SMITH, CAROL A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2012-10</date><risdate>2012</risdate><volume>21</volume><issue>19</issue><spage>4672</spage><epage>4680</epage><pages>4672-4680</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence of the transgene in the environment (Warwick et al. 2008). Creeping bentgrass (Agrostis stolonifera L.), a turfgrass species widely used on golf courses, has been genetically engineered to be resistant to glyphosate, a nonselective herbicide. Outcrossing species, such as creeping bentgrass (CB), which have several compatible species, have greater chances for gene escape and spontaneous hybridization (i.e. natural, unassisted sexual reproduction between taxa in the field), which challenges transgene containment. Several authors have emphasized the need for evidence of spontaneous hybridization to infer the potential for gene flow (Armstrong et al. 2005). Here we report that a transgenic intergeneric hybrid has been produced as result of spontaneous hybridization of a feral‐regulated transgenic pollen receptor (CB) and a nontransgenic pollen donor (rabbitfoot grass, RF, Polypogon monspeliensis (L.) Desf.). We identified an off‐type transgenic seedling and confirmed it to be CB × RF intergeneric hybrid. This first report of a transgenic intergeneric hybrid produced in situ with a regulated transgenic event demonstrates the importance of considering all possible avenues for transgene spread at the landscape level before planting a regulated transgenic crop in the field. Spontaneous hybridization adds a level of complexity to transgene monitoring, containment, mitigation and remediation programmes. See also the Perspective by Snow</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22625177</pmid><doi>10.1111/j.1365-294X.2012.05627.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2012-10, Vol.21 (19), p.4672-4680
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_1080884452
source Wiley
subjects Agropogon littoralis
Agrostis - genetics
Agrostis stolonifera
DNA Primers - genetics
DNA, Plant - genetics
Gene Flow
Genes
Genetic Markers
Glycine - analogs & derivatives
Glyphosate
Grasses
herbicide resistance
Herbicide Resistance - genetics
Hybridization
Hybridization, Genetic
Molecular Sequence Data
Plant populations
Plants, Genetically Modified - genetics
Polypogon monspeliensis
Sequence Analysis, DNA
spontaneous hybridization
Transgenes
transgenic crop
Transgenic plants
title Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crossing%20the%20divide:%20gene%20flow%20produces%20intergeneric%20hybrid%20in%20feral%20transgenic%20creeping%20bentgrass%20population&rft.jtitle=Molecular%20ecology&rft.au=ZAPIOLA,%20MAR%C3%8DA%20L.&rft.date=2012-10&rft.volume=21&rft.issue=19&rft.spage=4672&rft.epage=4680&rft.pages=4672-4680&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/j.1365-294X.2012.05627.x&rft_dat=%3Cproquest_cross%3E1080884452%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1074420922&rft_id=info:pmid/22625177&rfr_iscdi=true