Loading…
Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population
Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence...
Saved in:
Published in: | Molecular ecology 2012-10, Vol.21 (19), p.4672-4680 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003 |
---|---|
cites | cdi_FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003 |
container_end_page | 4680 |
container_issue | 19 |
container_start_page | 4672 |
container_title | Molecular ecology |
container_volume | 21 |
creator | ZAPIOLA, MARÍA L. MALLORY-SMITH, CAROL A. |
description | Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence of the transgene in the environment (Warwick et al. 2008). Creeping bentgrass (Agrostis stolonifera L.), a turfgrass species widely used on golf courses, has been genetically engineered to be resistant to glyphosate, a nonselective herbicide. Outcrossing species, such as creeping bentgrass (CB), which have several compatible species, have greater chances for gene escape and spontaneous hybridization (i.e. natural, unassisted sexual reproduction between taxa in the field), which challenges transgene containment. Several authors have emphasized the need for evidence of spontaneous hybridization to infer the potential for gene flow (Armstrong et al. 2005). Here we report that a transgenic intergeneric hybrid has been produced as result of spontaneous hybridization of a feral‐regulated transgenic pollen receptor (CB) and a nontransgenic pollen donor (rabbitfoot grass, RF, Polypogon monspeliensis (L.) Desf.). We identified an off‐type transgenic seedling and confirmed it to be CB × RF intergeneric hybrid. This first report of a transgenic intergeneric hybrid produced in situ with a regulated transgenic event demonstrates the importance of considering all possible avenues for transgene spread at the landscape level before planting a regulated transgenic crop in the field. Spontaneous hybridization adds a level of complexity to transgene monitoring, containment, mitigation and remediation programmes.
See also the Perspective by Snow |
doi_str_mv | 10.1111/j.1365-294X.2012.05627.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1080884452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080884452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS0EokvhLyBLXLgk2I4dx0gc0NItSF24UJWb5cSTrZdsktoJ3f332GzZQ0_1xdbM98aj9xDClOQ0ng_bnBalyJjiv3JGKMuJKJnM98_Q4tR4jhZElSyjpCrO0KsQtoTQggnxEp0xVjJBpVyg3dIPIbh-g6dbwNb9cRY-4g30gNtuuMejH-zcQMCun8CnuncNvj3U3tlYwy140-HJmz7EZmw1HmBM82rop403IeBxGOfOTG7oX6MXrekCvHm4z9H16uLn8mt29ePy2_LzVdbwQsiMM96UikspwQojFBDgDZe1EGCsNI2qgNdUMkuMAqvatrCMthCflaSKkOIcvT_OjevfzRAmvXOhga4zPQxz0NETUlWcCxbRd4_Q7TD7Pm4XKck5I4olqjpSTbLLQ6tH73bGHyKkUyR6q5PzOjmvUyT6XyR6H6VvHz6Y6x3Yk_B_BhH4dATuXQeHJw_W64tlekV9dtS7MMH-pDf-ty5lIYW--X6pBV2t119Wpa6Kv1IPqtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1074420922</pqid></control><display><type>article</type><title>Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population</title><source>Wiley</source><creator>ZAPIOLA, MARÍA L. ; MALLORY-SMITH, CAROL A.</creator><creatorcontrib>ZAPIOLA, MARÍA L. ; MALLORY-SMITH, CAROL A.</creatorcontrib><description>Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence of the transgene in the environment (Warwick et al. 2008). Creeping bentgrass (Agrostis stolonifera L.), a turfgrass species widely used on golf courses, has been genetically engineered to be resistant to glyphosate, a nonselective herbicide. Outcrossing species, such as creeping bentgrass (CB), which have several compatible species, have greater chances for gene escape and spontaneous hybridization (i.e. natural, unassisted sexual reproduction between taxa in the field), which challenges transgene containment. Several authors have emphasized the need for evidence of spontaneous hybridization to infer the potential for gene flow (Armstrong et al. 2005). Here we report that a transgenic intergeneric hybrid has been produced as result of spontaneous hybridization of a feral‐regulated transgenic pollen receptor (CB) and a nontransgenic pollen donor (rabbitfoot grass, RF, Polypogon monspeliensis (L.) Desf.). We identified an off‐type transgenic seedling and confirmed it to be CB × RF intergeneric hybrid. This first report of a transgenic intergeneric hybrid produced in situ with a regulated transgenic event demonstrates the importance of considering all possible avenues for transgene spread at the landscape level before planting a regulated transgenic crop in the field. Spontaneous hybridization adds a level of complexity to transgene monitoring, containment, mitigation and remediation programmes.
See also the Perspective by Snow</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/j.1365-294X.2012.05627.x</identifier><identifier>PMID: 22625177</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Agropogon littoralis ; Agrostis - genetics ; Agrostis stolonifera ; DNA Primers - genetics ; DNA, Plant - genetics ; Gene Flow ; Genes ; Genetic Markers ; Glycine - analogs & derivatives ; Glyphosate ; Grasses ; herbicide resistance ; Herbicide Resistance - genetics ; Hybridization ; Hybridization, Genetic ; Molecular Sequence Data ; Plant populations ; Plants, Genetically Modified - genetics ; Polypogon monspeliensis ; Sequence Analysis, DNA ; spontaneous hybridization ; Transgenes ; transgenic crop ; Transgenic plants</subject><ispartof>Molecular ecology, 2012-10, Vol.21 (19), p.4672-4680</ispartof><rights>2012 Blackwell Publishing Ltd</rights><rights>2012 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003</citedby><cites>FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22625177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ZAPIOLA, MARÍA L.</creatorcontrib><creatorcontrib>MALLORY-SMITH, CAROL A.</creatorcontrib><title>Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence of the transgene in the environment (Warwick et al. 2008). Creeping bentgrass (Agrostis stolonifera L.), a turfgrass species widely used on golf courses, has been genetically engineered to be resistant to glyphosate, a nonselective herbicide. Outcrossing species, such as creeping bentgrass (CB), which have several compatible species, have greater chances for gene escape and spontaneous hybridization (i.e. natural, unassisted sexual reproduction between taxa in the field), which challenges transgene containment. Several authors have emphasized the need for evidence of spontaneous hybridization to infer the potential for gene flow (Armstrong et al. 2005). Here we report that a transgenic intergeneric hybrid has been produced as result of spontaneous hybridization of a feral‐regulated transgenic pollen receptor (CB) and a nontransgenic pollen donor (rabbitfoot grass, RF, Polypogon monspeliensis (L.) Desf.). We identified an off‐type transgenic seedling and confirmed it to be CB × RF intergeneric hybrid. This first report of a transgenic intergeneric hybrid produced in situ with a regulated transgenic event demonstrates the importance of considering all possible avenues for transgene spread at the landscape level before planting a regulated transgenic crop in the field. Spontaneous hybridization adds a level of complexity to transgene monitoring, containment, mitigation and remediation programmes.
See also the Perspective by Snow</description><subject>Agropogon littoralis</subject><subject>Agrostis - genetics</subject><subject>Agrostis stolonifera</subject><subject>DNA Primers - genetics</subject><subject>DNA, Plant - genetics</subject><subject>Gene Flow</subject><subject>Genes</subject><subject>Genetic Markers</subject><subject>Glycine - analogs & derivatives</subject><subject>Glyphosate</subject><subject>Grasses</subject><subject>herbicide resistance</subject><subject>Herbicide Resistance - genetics</subject><subject>Hybridization</subject><subject>Hybridization, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Plant populations</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Polypogon monspeliensis</subject><subject>Sequence Analysis, DNA</subject><subject>spontaneous hybridization</subject><subject>Transgenes</subject><subject>transgenic crop</subject><subject>Transgenic plants</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkUFv1DAQhS0EokvhLyBLXLgk2I4dx0gc0NItSF24UJWb5cSTrZdsktoJ3f332GzZQ0_1xdbM98aj9xDClOQ0ng_bnBalyJjiv3JGKMuJKJnM98_Q4tR4jhZElSyjpCrO0KsQtoTQggnxEp0xVjJBpVyg3dIPIbh-g6dbwNb9cRY-4g30gNtuuMejH-zcQMCun8CnuncNvj3U3tlYwy140-HJmz7EZmw1HmBM82rop403IeBxGOfOTG7oX6MXrekCvHm4z9H16uLn8mt29ePy2_LzVdbwQsiMM96UikspwQojFBDgDZe1EGCsNI2qgNdUMkuMAqvatrCMthCflaSKkOIcvT_OjevfzRAmvXOhga4zPQxz0NETUlWcCxbRd4_Q7TD7Pm4XKck5I4olqjpSTbLLQ6tH73bGHyKkUyR6q5PzOjmvUyT6XyR6H6VvHz6Y6x3Yk_B_BhH4dATuXQeHJw_W64tlekV9dtS7MMH-pDf-ty5lIYW--X6pBV2t119Wpa6Kv1IPqtY</recordid><startdate>201210</startdate><enddate>201210</enddate><creator>ZAPIOLA, MARÍA L.</creator><creator>MALLORY-SMITH, CAROL A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201210</creationdate><title>Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population</title><author>ZAPIOLA, MARÍA L. ; MALLORY-SMITH, CAROL A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Agropogon littoralis</topic><topic>Agrostis - genetics</topic><topic>Agrostis stolonifera</topic><topic>DNA Primers - genetics</topic><topic>DNA, Plant - genetics</topic><topic>Gene Flow</topic><topic>Genes</topic><topic>Genetic Markers</topic><topic>Glycine - analogs & derivatives</topic><topic>Glyphosate</topic><topic>Grasses</topic><topic>herbicide resistance</topic><topic>Herbicide Resistance - genetics</topic><topic>Hybridization</topic><topic>Hybridization, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Plant populations</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Polypogon monspeliensis</topic><topic>Sequence Analysis, DNA</topic><topic>spontaneous hybridization</topic><topic>Transgenes</topic><topic>transgenic crop</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZAPIOLA, MARÍA L.</creatorcontrib><creatorcontrib>MALLORY-SMITH, CAROL A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZAPIOLA, MARÍA L.</au><au>MALLORY-SMITH, CAROL A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2012-10</date><risdate>2012</risdate><volume>21</volume><issue>19</issue><spage>4672</spage><epage>4680</epage><pages>4672-4680</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Gene flow is the most frequently expressed public concern related to the deregulation of transgenic events (Snow 2002; Ellstrand 2003). However, assessing the potential for transgene escape is complex because it depends on the opportunities for unintended gene flow, and establishment and persistence of the transgene in the environment (Warwick et al. 2008). Creeping bentgrass (Agrostis stolonifera L.), a turfgrass species widely used on golf courses, has been genetically engineered to be resistant to glyphosate, a nonselective herbicide. Outcrossing species, such as creeping bentgrass (CB), which have several compatible species, have greater chances for gene escape and spontaneous hybridization (i.e. natural, unassisted sexual reproduction between taxa in the field), which challenges transgene containment. Several authors have emphasized the need for evidence of spontaneous hybridization to infer the potential for gene flow (Armstrong et al. 2005). Here we report that a transgenic intergeneric hybrid has been produced as result of spontaneous hybridization of a feral‐regulated transgenic pollen receptor (CB) and a nontransgenic pollen donor (rabbitfoot grass, RF, Polypogon monspeliensis (L.) Desf.). We identified an off‐type transgenic seedling and confirmed it to be CB × RF intergeneric hybrid. This first report of a transgenic intergeneric hybrid produced in situ with a regulated transgenic event demonstrates the importance of considering all possible avenues for transgene spread at the landscape level before planting a regulated transgenic crop in the field. Spontaneous hybridization adds a level of complexity to transgene monitoring, containment, mitigation and remediation programmes.
See also the Perspective by Snow</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22625177</pmid><doi>10.1111/j.1365-294X.2012.05627.x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2012-10, Vol.21 (19), p.4672-4680 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_1080884452 |
source | Wiley |
subjects | Agropogon littoralis Agrostis - genetics Agrostis stolonifera DNA Primers - genetics DNA, Plant - genetics Gene Flow Genes Genetic Markers Glycine - analogs & derivatives Glyphosate Grasses herbicide resistance Herbicide Resistance - genetics Hybridization Hybridization, Genetic Molecular Sequence Data Plant populations Plants, Genetically Modified - genetics Polypogon monspeliensis Sequence Analysis, DNA spontaneous hybridization Transgenes transgenic crop Transgenic plants |
title | Crossing the divide: gene flow produces intergeneric hybrid in feral transgenic creeping bentgrass population |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crossing%20the%20divide:%20gene%20flow%20produces%20intergeneric%20hybrid%20in%20feral%20transgenic%20creeping%20bentgrass%20population&rft.jtitle=Molecular%20ecology&rft.au=ZAPIOLA,%20MAR%C3%8DA%20L.&rft.date=2012-10&rft.volume=21&rft.issue=19&rft.spage=4672&rft.epage=4680&rft.pages=4672-4680&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/j.1365-294X.2012.05627.x&rft_dat=%3Cproquest_cross%3E1080884452%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4357-424c694777ed5a59e0e4c47b55ead7ac98e4b172d0a9ed9ff3d21feed98719003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1074420922&rft_id=info:pmid/22625177&rfr_iscdi=true |