Loading…

Selective Sidewall Wetting of Polymer Blocks in Hydrogen Silsesquioxane Directed Self-Assembly of PS‑b‑PDMS

We show the importance of sidewall chemistry for the graphoepitaxial alignment of PS-b-PDMS using prepatterns fabricated by electron beam lithography of hydrogen silsesquioxane (HSQ) and by deep ultraviolet (DUV) lithography on SiO2 thin films. Density multiplication of polystyrene-block-polydimethy...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2012-09, Vol.4 (9), p.4637-4642
Main Authors: Hobbs, Richard G, Farrell, Richard A, Bolger, Ciara T, Kelly, Roisin A, Morris, Michael A, Petkov, Nikolay, Holmes, Justin D
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show the importance of sidewall chemistry for the graphoepitaxial alignment of PS-b-PDMS using prepatterns fabricated by electron beam lithography of hydrogen silsesquioxane (HSQ) and by deep ultraviolet (DUV) lithography on SiO2 thin films. Density multiplication of polystyrene-block-polydimethylsiloxane (PS-b-PDMS) within both prepatterns was achieved by using a room temperature dynamic solvent annealing environment. Selective tuning of PS and PDMS wetting on the HSQ template sidewalls was also achieved through careful functionalization of the template and substrate surface using either brush or a self-assembled trimethylsilyl monolayer. PDMS selectively wets HSQ sidewalls treated with a brush layer of PDMS, whiereas PS is found to selectively wet HSQ sidewalls treated with hexamethyldisilazane (HMDS) to produce a trimethylsilyl-terminated surface. The etch resistance of the aligned polymer was also evaluated to understand the implications of using block copolymer patterns which have high etch resistance, self-forming (PDMS) wetting layers at both interfaces. The results outlined in this work may have direct applications in nanolithography for continued device scaling toward the end-of-roadmap era.
ISSN:1944-8244
1944-8252
DOI:10.1021/am301012p