Loading…
A Brucella abortus cstA mutant is defective for association with endoplasmic reticulum exit sites and displays altered trafficking in HeLa cells
Members of the genus Brucella are facultative intracellular pathogenic bacteria able to control maturation of their vacuoles. In several cell types, Brucella is able to reach a proliferation compartment derived from the endoplasmic reticulum (ER). Since ER exit site (ERES) functions are required for...
Saved in:
Published in: | Microbiology (Society for General Microbiology) 2012-10, Vol.158 (Pt 10), p.2610-2618 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Members of the genus Brucella are facultative intracellular pathogenic bacteria able to control maturation of their vacuoles. In several cell types, Brucella is able to reach a proliferation compartment derived from the endoplasmic reticulum (ER). Since ER exit site (ERES) functions are required for Brucella proliferation, we performed a yeast two-hybrid screen between human ERES-associated proteins and the predicted brucella proteome. This screening led to the identification of CstA, a conserved protein that specifically interacts with Sec24A, a component of the ERES. We found that a tagged CstA is secreted in Brucella abortus culture medium. This secretion is independent of the type IV secretion system VirB and the flagellum, suggesting that CstA is secreted through another system. We also discovered that a B. abortus cstA mutant is impaired for its association with the Sec23 ERES marker. The B. abortus cstA mutant displayed peculiar trafficking, with reduced association with LAMP1 and Calnexin 12 h post-infection in HeLa cells. However, its intracellular proliferation kinetics was not affected. The data reported here suggest that CstA could be directly or indirectly involved in the control of B. abortus intracellular trafficking in HeLa cells. |
---|---|
ISSN: | 1350-0872 1465-2080 |
DOI: | 10.1099/mic.0.060509-0 |