Loading…

Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry

A new microscale oxybarometer for solar system basaltic glasses, based on vanadium K-edge X-ray absorption near edge structure (XANES) spectroscopy, is described. Vanadium is unique among abundant elements in siliceous materials in that it can potentially occur in nature in four valence states: V 2+...

Full description

Saved in:
Bibliographic Details
Published in:Geochimica et cosmochimica acta 2005-05, Vol.69 (9), p.2333-2348
Main Authors: Sutton, S.R., Karner, J., Papike, J., Delaney, J.S., Shearer, C., Newville, M., Eng, P., Rivers, M., Dyar, M.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new microscale oxybarometer for solar system basaltic glasses, based on vanadium K-edge X-ray absorption near edge structure (XANES) spectroscopy, is described. Vanadium is unique among abundant elements in siliceous materials in that it can potentially occur in nature in four valence states: V 2+, V 3+, V 4+ and V 5+. Consequently, the vanadium redox system is a robust oxybarometer covering at least six orders of magnitude in buffer-relative oxygen fugacity. The method was calibrated using synthetic glass standards produced under known fO 2 and temperature conditions. Correction for temperature differences among standards and unknowns was quantified using microXANES data for isobaric synthetic glass couples. Application of the method to lunar, martian, and terrestrial glasses yielded fO 2 estimates from 1.6 log units more reduced than the iron-wüstite (IW) buffer (IW-1.6) for lunar glasses, to IW + 4.0 for terrestrial glass inclusions. The martian and terrestrial results are in good agreement with previous estimates by other methods. The inferred fO 2 values for lunar pyroclastic glasses are ∼0.5 log unit more reduced than previous estimates, but the differences are comparable to analytical uncertainties. Micro-extended X-ray absorption fine structure spectra were consistent with the valence states determined by microXANES and provided additional constraints on vanadium site geometry. These results demonstrate the value of this new oxybarometer, which can be applied nondestructively to individual grains in conventional thin sections with ∼ micrometer resolution and ∼100 ppm elemental sensitivity.
ISSN:0016-7037
1872-9533
DOI:10.1016/j.gca.2004.10.013