Loading…
Modelling fatigue crack propagation in CT specimens
ABSTRACT Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence o...
Saved in:
Published in: | Fatigue & fracture of engineering materials & structures 2008-06, Vol.31 (6), p.452-465 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3 |
container_end_page | 465 |
container_issue | 6 |
container_start_page | 452 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 31 |
creator | BRANCO, R. ANTUNES, F. V. MARTINS, R. F. |
description | ABSTRACT
Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence of numerical parameters, particularly the radial size of crack front elements and the magnitude of individual crack extensions, the mathematical modelling of crack propagation regimes, and the linking of crack shape changes with K distribution. A relatively simple through‐crack geometry, the CT specimen, was studied and the numerical model was validated with experimental results with a good agreement. The K distribution along crack front was found to be the driving force for shape variations. Shape variations were found to be one order of magnitude lower than K variations. |
doi_str_mv | 10.1111/j.1460-2695.2008.01241.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082200532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1509788961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3</originalsourceid><addsrcrecordid>eNqNkM9LwzAcxYMoOKf_QxEEL6351aQ9eJDhpjAV2VDxEtI0Hem6diYrbv-9qR07eDKXhOTzXt73ARAgGCG_bsoIUQZDzNI4whAmEUSYomh7BAaHh2MwSHjMQh4nH6fgzLkSQsQoIQNAnppcV5WpF0EhN2bR6kBZqZbB2jZrufBXTR2YOhjNA7fWyqx07c7BSSErpy_2-xDMx_fz0UM4fZk8ju6moaIUoVBjRguGeSpVopQkGcM5LnLEU5JLVvA4p4pzjnIOMWNcK57mMs0YTIosyxUZguve1kf5arXbiJVxyoeVtW5aJxBMsJ84Jtijl3_Qsmlt7cMJDCkivqgOSnpI2cY5qwuxtmYl7c47ia5LUYquMtFVJrouxW-XYuulV3t_6ZSsCitrZdxB7_9I_cTQc7c9920qvfu3vxiP77uT14e93riN3h700i4F44TH4v15Il7ZLI7fZlx8kh8dUpS6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204131112</pqid></control><display><type>article</type><title>Modelling fatigue crack propagation in CT specimens</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>BRANCO, R. ; ANTUNES, F. V. ; MARTINS, R. F.</creator><creatorcontrib>BRANCO, R. ; ANTUNES, F. V. ; MARTINS, R. F.</creatorcontrib><description>ABSTRACT
Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence of numerical parameters, particularly the radial size of crack front elements and the magnitude of individual crack extensions, the mathematical modelling of crack propagation regimes, and the linking of crack shape changes with K distribution. A relatively simple through‐crack geometry, the CT specimen, was studied and the numerical model was validated with experimental results with a good agreement. The K distribution along crack front was found to be the driving force for shape variations. Shape variations were found to be one order of magnitude lower than K variations.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/j.1460-2695.2008.01241.x</identifier><identifier>CODEN: FFESEY</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; automatic fatigue crack growth ; Crack propagation ; crack shape modelling ; CT specimen ; Evolution ; Exact sciences and technology ; Fatigue ; Fatigue failure ; Fracture mechanics ; Geometry ; Mathematical models ; Mechanical engineering ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Modelling ; propagation regimes ; Simulation ; Stress concentration</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2008-06, Vol.31 (6), p.452-465</ispartof><rights>2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.</rights><rights>2009 INIST-CNRS</rights><rights>Journal Compilation © 2008 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3</citedby><cites>FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20494110$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BRANCO, R.</creatorcontrib><creatorcontrib>ANTUNES, F. V.</creatorcontrib><creatorcontrib>MARTINS, R. F.</creatorcontrib><title>Modelling fatigue crack propagation in CT specimens</title><title>Fatigue & fracture of engineering materials & structures</title><description>ABSTRACT
Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence of numerical parameters, particularly the radial size of crack front elements and the magnitude of individual crack extensions, the mathematical modelling of crack propagation regimes, and the linking of crack shape changes with K distribution. A relatively simple through‐crack geometry, the CT specimen, was studied and the numerical model was validated with experimental results with a good agreement. The K distribution along crack front was found to be the driving force for shape variations. Shape variations were found to be one order of magnitude lower than K variations.</description><subject>Applied sciences</subject><subject>automatic fatigue crack growth</subject><subject>Crack propagation</subject><subject>crack shape modelling</subject><subject>CT specimen</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Geometry</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Modelling</subject><subject>propagation regimes</subject><subject>Simulation</subject><subject>Stress concentration</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAcxYMoOKf_QxEEL6351aQ9eJDhpjAV2VDxEtI0Hem6diYrbv-9qR07eDKXhOTzXt73ARAgGCG_bsoIUQZDzNI4whAmEUSYomh7BAaHh2MwSHjMQh4nH6fgzLkSQsQoIQNAnppcV5WpF0EhN2bR6kBZqZbB2jZrufBXTR2YOhjNA7fWyqx07c7BSSErpy_2-xDMx_fz0UM4fZk8ju6moaIUoVBjRguGeSpVopQkGcM5LnLEU5JLVvA4p4pzjnIOMWNcK57mMs0YTIosyxUZguve1kf5arXbiJVxyoeVtW5aJxBMsJ84Jtijl3_Qsmlt7cMJDCkivqgOSnpI2cY5qwuxtmYl7c47ia5LUYquMtFVJrouxW-XYuulV3t_6ZSsCitrZdxB7_9I_cTQc7c9920qvfu3vxiP77uT14e93riN3h700i4F44TH4v15Il7ZLI7fZlx8kh8dUpS6</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>BRANCO, R.</creator><creator>ANTUNES, F. V.</creator><creator>MARTINS, R. F.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>200806</creationdate><title>Modelling fatigue crack propagation in CT specimens</title><author>BRANCO, R. ; ANTUNES, F. V. ; MARTINS, R. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>automatic fatigue crack growth</topic><topic>Crack propagation</topic><topic>crack shape modelling</topic><topic>CT specimen</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Geometry</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Modelling</topic><topic>propagation regimes</topic><topic>Simulation</topic><topic>Stress concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRANCO, R.</creatorcontrib><creatorcontrib>ANTUNES, F. V.</creatorcontrib><creatorcontrib>MARTINS, R. F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRANCO, R.</au><au>ANTUNES, F. V.</au><au>MARTINS, R. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling fatigue crack propagation in CT specimens</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2008-06</date><risdate>2008</risdate><volume>31</volume><issue>6</issue><spage>452</spage><epage>465</epage><pages>452-465</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><coden>FFESEY</coden><abstract>ABSTRACT
Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence of numerical parameters, particularly the radial size of crack front elements and the magnitude of individual crack extensions, the mathematical modelling of crack propagation regimes, and the linking of crack shape changes with K distribution. A relatively simple through‐crack geometry, the CT specimen, was studied and the numerical model was validated with experimental results with a good agreement. The K distribution along crack front was found to be the driving force for shape variations. Shape variations were found to be one order of magnitude lower than K variations.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1460-2695.2008.01241.x</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2008-06, Vol.31 (6), p.452-465 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_miscellaneous_1082200532 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Applied sciences automatic fatigue crack growth Crack propagation crack shape modelling CT specimen Evolution Exact sciences and technology Fatigue Fatigue failure Fracture mechanics Geometry Mathematical models Mechanical engineering Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Modelling propagation regimes Simulation Stress concentration |
title | Modelling fatigue crack propagation in CT specimens |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20fatigue%20crack%20propagation%20in%20CT%20specimens&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=BRANCO,%20R.&rft.date=2008-06&rft.volume=31&rft.issue=6&rft.spage=452&rft.epage=465&rft.pages=452-465&rft.issn=8756-758X&rft.eissn=1460-2695&rft.coden=FFESEY&rft_id=info:doi/10.1111/j.1460-2695.2008.01241.x&rft_dat=%3Cproquest_cross%3E1509788961%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204131112&rft_id=info:pmid/&rfr_iscdi=true |