Loading…

Modelling fatigue crack propagation in CT specimens

ABSTRACT Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence o...

Full description

Saved in:
Bibliographic Details
Published in:Fatigue & fracture of engineering materials & structures 2008-06, Vol.31 (6), p.452-465
Main Authors: BRANCO, R., ANTUNES, F. V., MARTINS, R. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3
cites cdi_FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3
container_end_page 465
container_issue 6
container_start_page 452
container_title Fatigue & fracture of engineering materials & structures
container_volume 31
creator BRANCO, R.
ANTUNES, F. V.
MARTINS, R. F.
description ABSTRACT Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence of numerical parameters, particularly the radial size of crack front elements and the magnitude of individual crack extensions, the mathematical modelling of crack propagation regimes, and the linking of crack shape changes with K distribution. A relatively simple through‐crack geometry, the CT specimen, was studied and the numerical model was validated with experimental results with a good agreement. The K distribution along crack front was found to be the driving force for shape variations. Shape variations were found to be one order of magnitude lower than K variations.
doi_str_mv 10.1111/j.1460-2695.2008.01241.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082200532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1509788961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3</originalsourceid><addsrcrecordid>eNqNkM9LwzAcxYMoOKf_QxEEL6351aQ9eJDhpjAV2VDxEtI0Hem6diYrbv-9qR07eDKXhOTzXt73ARAgGCG_bsoIUQZDzNI4whAmEUSYomh7BAaHh2MwSHjMQh4nH6fgzLkSQsQoIQNAnppcV5WpF0EhN2bR6kBZqZbB2jZrufBXTR2YOhjNA7fWyqx07c7BSSErpy_2-xDMx_fz0UM4fZk8ju6moaIUoVBjRguGeSpVopQkGcM5LnLEU5JLVvA4p4pzjnIOMWNcK57mMs0YTIosyxUZguve1kf5arXbiJVxyoeVtW5aJxBMsJ84Jtijl3_Qsmlt7cMJDCkivqgOSnpI2cY5qwuxtmYl7c47ia5LUYquMtFVJrouxW-XYuulV3t_6ZSsCitrZdxB7_9I_cTQc7c9920qvfu3vxiP77uT14e93riN3h700i4F44TH4v15Il7ZLI7fZlx8kh8dUpS6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204131112</pqid></control><display><type>article</type><title>Modelling fatigue crack propagation in CT specimens</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>BRANCO, R. ; ANTUNES, F. V. ; MARTINS, R. F.</creator><creatorcontrib>BRANCO, R. ; ANTUNES, F. V. ; MARTINS, R. F.</creatorcontrib><description>ABSTRACT Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence of numerical parameters, particularly the radial size of crack front elements and the magnitude of individual crack extensions, the mathematical modelling of crack propagation regimes, and the linking of crack shape changes with K distribution. A relatively simple through‐crack geometry, the CT specimen, was studied and the numerical model was validated with experimental results with a good agreement. The K distribution along crack front was found to be the driving force for shape variations. Shape variations were found to be one order of magnitude lower than K variations.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/j.1460-2695.2008.01241.x</identifier><identifier>CODEN: FFESEY</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; automatic fatigue crack growth ; Crack propagation ; crack shape modelling ; CT specimen ; Evolution ; Exact sciences and technology ; Fatigue ; Fatigue failure ; Fracture mechanics ; Geometry ; Mathematical models ; Mechanical engineering ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Modelling ; propagation regimes ; Simulation ; Stress concentration</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2008-06, Vol.31 (6), p.452-465</ispartof><rights>2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.</rights><rights>2009 INIST-CNRS</rights><rights>Journal Compilation © 2008 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3</citedby><cites>FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20494110$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BRANCO, R.</creatorcontrib><creatorcontrib>ANTUNES, F. V.</creatorcontrib><creatorcontrib>MARTINS, R. F.</creatorcontrib><title>Modelling fatigue crack propagation in CT specimens</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>ABSTRACT Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence of numerical parameters, particularly the radial size of crack front elements and the magnitude of individual crack extensions, the mathematical modelling of crack propagation regimes, and the linking of crack shape changes with K distribution. A relatively simple through‐crack geometry, the CT specimen, was studied and the numerical model was validated with experimental results with a good agreement. The K distribution along crack front was found to be the driving force for shape variations. Shape variations were found to be one order of magnitude lower than K variations.</description><subject>Applied sciences</subject><subject>automatic fatigue crack growth</subject><subject>Crack propagation</subject><subject>crack shape modelling</subject><subject>CT specimen</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Geometry</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Modelling</subject><subject>propagation regimes</subject><subject>Simulation</subject><subject>Stress concentration</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAcxYMoOKf_QxEEL6351aQ9eJDhpjAV2VDxEtI0Hem6diYrbv-9qR07eDKXhOTzXt73ARAgGCG_bsoIUQZDzNI4whAmEUSYomh7BAaHh2MwSHjMQh4nH6fgzLkSQsQoIQNAnppcV5WpF0EhN2bR6kBZqZbB2jZrufBXTR2YOhjNA7fWyqx07c7BSSErpy_2-xDMx_fz0UM4fZk8ju6moaIUoVBjRguGeSpVopQkGcM5LnLEU5JLVvA4p4pzjnIOMWNcK57mMs0YTIosyxUZguve1kf5arXbiJVxyoeVtW5aJxBMsJ84Jtijl3_Qsmlt7cMJDCkivqgOSnpI2cY5qwuxtmYl7c47ia5LUYquMtFVJrouxW-XYuulV3t_6ZSsCitrZdxB7_9I_cTQc7c9920qvfu3vxiP77uT14e93riN3h700i4F44TH4v15Il7ZLI7fZlx8kh8dUpS6</recordid><startdate>200806</startdate><enddate>200806</enddate><creator>BRANCO, R.</creator><creator>ANTUNES, F. V.</creator><creator>MARTINS, R. F.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>200806</creationdate><title>Modelling fatigue crack propagation in CT specimens</title><author>BRANCO, R. ; ANTUNES, F. V. ; MARTINS, R. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>automatic fatigue crack growth</topic><topic>Crack propagation</topic><topic>crack shape modelling</topic><topic>CT specimen</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Geometry</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Modelling</topic><topic>propagation regimes</topic><topic>Simulation</topic><topic>Stress concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BRANCO, R.</creatorcontrib><creatorcontrib>ANTUNES, F. V.</creatorcontrib><creatorcontrib>MARTINS, R. F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BRANCO, R.</au><au>ANTUNES, F. V.</au><au>MARTINS, R. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling fatigue crack propagation in CT specimens</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2008-06</date><risdate>2008</risdate><volume>31</volume><issue>6</issue><spage>452</spage><epage>465</epage><pages>452-465</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><coden>FFESEY</coden><abstract>ABSTRACT Although there are a great number of numerical studies focused on the numerical simulation of crack shape evolution, a deeper understanding is required concerning the numerical parameters and the mathematical modelling. Therefore, the objectives of the paper are the study of the influence of numerical parameters, particularly the radial size of crack front elements and the magnitude of individual crack extensions, the mathematical modelling of crack propagation regimes, and the linking of crack shape changes with K distribution. A relatively simple through‐crack geometry, the CT specimen, was studied and the numerical model was validated with experimental results with a good agreement. The K distribution along crack front was found to be the driving force for shape variations. Shape variations were found to be one order of magnitude lower than K variations.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1460-2695.2008.01241.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2008-06, Vol.31 (6), p.452-465
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_miscellaneous_1082200532
source Wiley-Blackwell Read & Publish Collection
subjects Applied sciences
automatic fatigue crack growth
Crack propagation
crack shape modelling
CT specimen
Evolution
Exact sciences and technology
Fatigue
Fatigue failure
Fracture mechanics
Geometry
Mathematical models
Mechanical engineering
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Modelling
propagation regimes
Simulation
Stress concentration
title Modelling fatigue crack propagation in CT specimens
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20fatigue%20crack%20propagation%20in%20CT%20specimens&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=BRANCO,%20R.&rft.date=2008-06&rft.volume=31&rft.issue=6&rft.spage=452&rft.epage=465&rft.pages=452-465&rft.issn=8756-758X&rft.eissn=1460-2695&rft.coden=FFESEY&rft_id=info:doi/10.1111/j.1460-2695.2008.01241.x&rft_dat=%3Cproquest_cross%3E1509788961%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4411-e264f6279ac8cca3b62d2fd1793da6f75d4c7771d702667ec79da9b608fbbdc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204131112&rft_id=info:pmid/&rfr_iscdi=true