Loading…

Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy

Double-pulse laser-induced breakdown spectroscopy (DP-LIBS) was performed for quantitative analysis of three metallic trace elements: Fe, Pb and Au in aqueous solutions. The plasma was generated using a UV (266 nm) frequency-quadrupled Q-switched Nd:YAG laser (7 ns) and then reheated by a 1064 nm Q-...

Full description

Saved in:
Bibliographic Details
Published in:Journal of analytical atomic spectrometry 2012-02, Vol.27 (2), p.276-283
Main Authors: Rifai, Kheireddine, Laville, Stphane, Vidal, Franois, Sabsabi, Mohamad, Chaker, Mohamed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Double-pulse laser-induced breakdown spectroscopy (DP-LIBS) was performed for quantitative analysis of three metallic trace elements: Fe, Pb and Au in aqueous solutions. The plasma was generated using a UV (266 nm) frequency-quadrupled Q-switched Nd:YAG laser (7 ns) and then reheated by a 1064 nm Q-switched Nd:YAG laser (7 ns) in a quasi-collinear geometrical configuration. In order to improve the reproducibility of LIBS measurements, a circulation cell was used, providing a reproducibility of about 4% with a laser repetition rate of 0.3 Hz. The influence of the inter-pulse delay and the fluence of the second laser pulse on the signal-to-noise ratio (SNR) for the analytical lines was investigated and optimized. Analytical figures of merit of DP-LIBS and conventional single-pulse LIBS (SP-LIBS) were evaluated by establishing the calibration curves for the Fe I 358.12 nm, Pb I 405.78 nm and Au I 267.60 nm lines. The signal was greatly enhanced in DP-LIBS while the noise level did not vary as much. An improvement of the relative limit of detection of about 10 was achieved using DP-LIBS when compared to UV SP-LIBS in all cases. Measurement of the electron density as a function of time indicates that the plasma plume lifetime is longer in DP-LIBS. Similar trends in the excitation temperature were not observed for reasons that we attribute to larger uncertainties related to the Boltzmann plot method. Double-pulse (UV+IR) laser-induced breakdown spectroscopy was used to improve the limit of detection of traces of gold, lead and iron in aqueous solutions.
ISSN:0267-9477
1364-5544
DOI:10.1039/c1ja10178a