Loading…
On the coloring of the annihilating-ideal graph of a commutative ring
Suppose that R is a commutative ring with identity. Let A(R) be the set of all ideals of R with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set A(R)∗=A(R)∖{(0)} and two distinct vertices I and J are adjacent if and only if IJ=(0). In Behbood...
Saved in:
Published in: | Discrete mathematics 2012-09, Vol.312 (17), p.2620-2626 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c377t-70a8ad3a64e38fad85578c266f4f9ade99b113f669c1e50fcd598b16b1927dda3 |
---|---|
cites | cdi_FETCH-LOGICAL-c377t-70a8ad3a64e38fad85578c266f4f9ade99b113f669c1e50fcd598b16b1927dda3 |
container_end_page | 2626 |
container_issue | 17 |
container_start_page | 2620 |
container_title | Discrete mathematics |
container_volume | 312 |
creator | Aalipour, G. Akbari, S. Nikandish, R. Nikmehr, M.J. Shaveisi, F. |
description | Suppose that R is a commutative ring with identity. Let A(R) be the set of all ideals of R with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set A(R)∗=A(R)∖{(0)} and two distinct vertices I and J are adjacent if and only if IJ=(0). In Behboodi and Rakeei (2011) [8], it was conjectured that for a reduced ring R with more than two minimal prime ideals, girth(AG(R))=3. Here, we prove that for every (not necessarily reduced) ring R, ω(AG(R))≥|Min(R)|, which shows that the conjecture is true. Also in this paper, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. Among other results, it is shown that if the chromatic number of the zero-divisor graph is finite, then the chromatic number of the annihilating-ideal graph is finite too. We investigate commutative rings whose annihilating-ideal graphs are bipartite. It is proved that AG(R) is bipartite if and only if AG(R) is triangle-free. |
doi_str_mv | 10.1016/j.disc.2011.10.020 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082211830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X11004778</els_id><sourcerecordid>1082211830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-70a8ad3a64e38fad85578c266f4f9ade99b113f669c1e50fcd598b16b1927dda3</originalsourceid><addsrcrecordid>eNp9UMtKAzEUDaJgrf6Aq1m6mTE36WQy4EZKfUChG4XuQprctCnzqMm04N-bsa5dXc7rwjmE3AMtgIJ43BfWR1MwCpCIgjJ6QSYgK5YLCetLMqEUWM5Fub4mNzHuacKCywlZrLps2GFm-qYPvttmvfvFuuv8zjd6SFzuLeom2wZ92I26Tu62PQ5JPGE2pm7JldNNxLu_OyWfL4uP-Vu-XL2-z5-XueFVNeQV1VJbrsUMuXTayrKspGFCuJmrtcW63gBwJ0RtAEvqjC1ruQGxgZpV1mo-JQ_nv4fQfx0xDqpNtbFpdIf9MSqgkjEAyWmysrPVhD7GgE4dgm91-E4mNW6m9mrcTI2bjVzaLIWeziFMJU4eg4rGY2fQ-oBmULb3_8V_AGhYdRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082211830</pqid></control><display><type>article</type><title>On the coloring of the annihilating-ideal graph of a commutative ring</title><source>Elsevier</source><creator>Aalipour, G. ; Akbari, S. ; Nikandish, R. ; Nikmehr, M.J. ; Shaveisi, F.</creator><creatorcontrib>Aalipour, G. ; Akbari, S. ; Nikandish, R. ; Nikmehr, M.J. ; Shaveisi, F.</creatorcontrib><description>Suppose that R is a commutative ring with identity. Let A(R) be the set of all ideals of R with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set A(R)∗=A(R)∖{(0)} and two distinct vertices I and J are adjacent if and only if IJ=(0). In Behboodi and Rakeei (2011) [8], it was conjectured that for a reduced ring R with more than two minimal prime ideals, girth(AG(R))=3. Here, we prove that for every (not necessarily reduced) ring R, ω(AG(R))≥|Min(R)|, which shows that the conjecture is true. Also in this paper, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. Among other results, it is shown that if the chromatic number of the zero-divisor graph is finite, then the chromatic number of the annihilating-ideal graph is finite too. We investigate commutative rings whose annihilating-ideal graphs are bipartite. It is proved that AG(R) is bipartite if and only if AG(R) is triangle-free.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2011.10.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Annihilating-ideal graph ; Chromatic number ; Clique number ; Coloring ; Graphs ; Mathematical analysis ; Minimal prime ideal ; Rings (mathematics)</subject><ispartof>Discrete mathematics, 2012-09, Vol.312 (17), p.2620-2626</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-70a8ad3a64e38fad85578c266f4f9ade99b113f669c1e50fcd598b16b1927dda3</citedby><cites>FETCH-LOGICAL-c377t-70a8ad3a64e38fad85578c266f4f9ade99b113f669c1e50fcd598b16b1927dda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aalipour, G.</creatorcontrib><creatorcontrib>Akbari, S.</creatorcontrib><creatorcontrib>Nikandish, R.</creatorcontrib><creatorcontrib>Nikmehr, M.J.</creatorcontrib><creatorcontrib>Shaveisi, F.</creatorcontrib><title>On the coloring of the annihilating-ideal graph of a commutative ring</title><title>Discrete mathematics</title><description>Suppose that R is a commutative ring with identity. Let A(R) be the set of all ideals of R with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set A(R)∗=A(R)∖{(0)} and two distinct vertices I and J are adjacent if and only if IJ=(0). In Behboodi and Rakeei (2011) [8], it was conjectured that for a reduced ring R with more than two minimal prime ideals, girth(AG(R))=3. Here, we prove that for every (not necessarily reduced) ring R, ω(AG(R))≥|Min(R)|, which shows that the conjecture is true. Also in this paper, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. Among other results, it is shown that if the chromatic number of the zero-divisor graph is finite, then the chromatic number of the annihilating-ideal graph is finite too. We investigate commutative rings whose annihilating-ideal graphs are bipartite. It is proved that AG(R) is bipartite if and only if AG(R) is triangle-free.</description><subject>Annihilating-ideal graph</subject><subject>Chromatic number</subject><subject>Clique number</subject><subject>Coloring</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Minimal prime ideal</subject><subject>Rings (mathematics)</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUDaJgrf6Aq1m6mTE36WQy4EZKfUChG4XuQprctCnzqMm04N-bsa5dXc7rwjmE3AMtgIJ43BfWR1MwCpCIgjJ6QSYgK5YLCetLMqEUWM5Fub4mNzHuacKCywlZrLps2GFm-qYPvttmvfvFuuv8zjd6SFzuLeom2wZ92I26Tu62PQ5JPGE2pm7JldNNxLu_OyWfL4uP-Vu-XL2-z5-XueFVNeQV1VJbrsUMuXTayrKspGFCuJmrtcW63gBwJ0RtAEvqjC1ruQGxgZpV1mo-JQ_nv4fQfx0xDqpNtbFpdIf9MSqgkjEAyWmysrPVhD7GgE4dgm91-E4mNW6m9mrcTI2bjVzaLIWeziFMJU4eg4rGY2fQ-oBmULb3_8V_AGhYdRM</recordid><startdate>20120906</startdate><enddate>20120906</enddate><creator>Aalipour, G.</creator><creator>Akbari, S.</creator><creator>Nikandish, R.</creator><creator>Nikmehr, M.J.</creator><creator>Shaveisi, F.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120906</creationdate><title>On the coloring of the annihilating-ideal graph of a commutative ring</title><author>Aalipour, G. ; Akbari, S. ; Nikandish, R. ; Nikmehr, M.J. ; Shaveisi, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-70a8ad3a64e38fad85578c266f4f9ade99b113f669c1e50fcd598b16b1927dda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Annihilating-ideal graph</topic><topic>Chromatic number</topic><topic>Clique number</topic><topic>Coloring</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Minimal prime ideal</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aalipour, G.</creatorcontrib><creatorcontrib>Akbari, S.</creatorcontrib><creatorcontrib>Nikandish, R.</creatorcontrib><creatorcontrib>Nikmehr, M.J.</creatorcontrib><creatorcontrib>Shaveisi, F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aalipour, G.</au><au>Akbari, S.</au><au>Nikandish, R.</au><au>Nikmehr, M.J.</au><au>Shaveisi, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the coloring of the annihilating-ideal graph of a commutative ring</atitle><jtitle>Discrete mathematics</jtitle><date>2012-09-06</date><risdate>2012</risdate><volume>312</volume><issue>17</issue><spage>2620</spage><epage>2626</epage><pages>2620-2626</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>Suppose that R is a commutative ring with identity. Let A(R) be the set of all ideals of R with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set A(R)∗=A(R)∖{(0)} and two distinct vertices I and J are adjacent if and only if IJ=(0). In Behboodi and Rakeei (2011) [8], it was conjectured that for a reduced ring R with more than two minimal prime ideals, girth(AG(R))=3. Here, we prove that for every (not necessarily reduced) ring R, ω(AG(R))≥|Min(R)|, which shows that the conjecture is true. Also in this paper, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. Among other results, it is shown that if the chromatic number of the zero-divisor graph is finite, then the chromatic number of the annihilating-ideal graph is finite too. We investigate commutative rings whose annihilating-ideal graphs are bipartite. It is proved that AG(R) is bipartite if and only if AG(R) is triangle-free.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2011.10.020</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2012-09, Vol.312 (17), p.2620-2626 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_proquest_miscellaneous_1082211830 |
source | Elsevier |
subjects | Annihilating-ideal graph Chromatic number Clique number Coloring Graphs Mathematical analysis Minimal prime ideal Rings (mathematics) |
title | On the coloring of the annihilating-ideal graph of a commutative ring |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20coloring%20of%20the%20annihilating-ideal%20graph%20of%20a%20commutative%20ring&rft.jtitle=Discrete%20mathematics&rft.au=Aalipour,%20G.&rft.date=2012-09-06&rft.volume=312&rft.issue=17&rft.spage=2620&rft.epage=2626&rft.pages=2620-2626&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2011.10.020&rft_dat=%3Cproquest_cross%3E1082211830%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-70a8ad3a64e38fad85578c266f4f9ade99b113f669c1e50fcd598b16b1927dda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082211830&rft_id=info:pmid/&rfr_iscdi=true |