Loading…

On solving stochastic collocation systems with algebraic multigrid

Stochastic collocation methods facilitate the numerical solution of partial differential equations (PDEs) with random data and give rise to long sequences of similar linear systems. When elliptic PDEs with random diffusion coefficients are discretized with mixed finite element methods in the physica...

Full description

Saved in:
Bibliographic Details
Published in:IMA journal of numerical analysis 2012-07, Vol.32 (3), p.1051-1070
Main Authors: Gordon, A. D., Powell, C. E.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c309t-3de147b368ff3586427596b8552c008e4961a33ce99692febd70f7b0c2dad27d3
cites
container_end_page 1070
container_issue 3
container_start_page 1051
container_title IMA journal of numerical analysis
container_volume 32
creator Gordon, A. D.
Powell, C. E.
description Stochastic collocation methods facilitate the numerical solution of partial differential equations (PDEs) with random data and give rise to long sequences of similar linear systems. When elliptic PDEs with random diffusion coefficients are discretized with mixed finite element methods in the physical domain we obtain saddle point systems. These are trivial to solve when considered individually; the challenge lies in exploiting their similarities to recycle information and minimize the cost of solving the entire sequence. We apply stochastic collocation to a model stochastic elliptic problem and discretize in physical space using Raviart-Thomas elements. We propose an efficient solution strategy for the resulting linear systems that is more robust than any other in the literature. In particular, we show that it is feasible to use finely-tuned algebraic multigrid preconditioning if key set-up information is reused. The proposed solver is robust with respect to variations in the discretization and statistical parameters for stochastically linear and nonlinear data.
doi_str_mv 10.1093/imanum/drr034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082218483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082218483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-3de147b368ff3586427596b8552c008e4961a33ce99692febd70f7b0c2dad27d3</originalsourceid><addsrcrecordid>eNotkDtPwzAYRS0EEqUwsmdkCf38SGyPUPGSKnWBOXJsJzVy4mI7oP57gsJ0h3t0dXUQusVwj0HSjRvUOA0bEyNQdoZWmNWspDUj52gFhJOSSS4v0VVKnwDAag4r9LgfixT8txv7IuWgDyplpwsdvA9aZRfm-pSyHVLx4_KhUL63bVQzMkw-uz46c40uOuWTvfnPNfp4fnrfvpa7_cvb9mFXagoyl9RYzHhLa9F1tBLzLV7JuhVVRTSAsEzWWFGqrZS1JJ1tDYeOt6CJUYZwQ9fobtk9xvA12ZSbwSVtvVejDVNqMAhCsGCCzmi5oDqGlKLtmmOc7cTTDDV_rprFVbO4or9JXF-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082218483</pqid></control><display><type>article</type><title>On solving stochastic collocation systems with algebraic multigrid</title><source>Oxford Journals Online</source><creator>Gordon, A. D. ; Powell, C. E.</creator><creatorcontrib>Gordon, A. D. ; Powell, C. E.</creatorcontrib><description>Stochastic collocation methods facilitate the numerical solution of partial differential equations (PDEs) with random data and give rise to long sequences of similar linear systems. When elliptic PDEs with random diffusion coefficients are discretized with mixed finite element methods in the physical domain we obtain saddle point systems. These are trivial to solve when considered individually; the challenge lies in exploiting their similarities to recycle information and minimize the cost of solving the entire sequence. We apply stochastic collocation to a model stochastic elliptic problem and discretize in physical space using Raviart-Thomas elements. We propose an efficient solution strategy for the resulting linear systems that is more robust than any other in the literature. In particular, we show that it is feasible to use finely-tuned algebraic multigrid preconditioning if key set-up information is reused. The proposed solver is robust with respect to variations in the discretization and statistical parameters for stochastically linear and nonlinear data.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drr034</identifier><language>eng</language><subject>Algebra ; Collocation ; Discretization ; Linear systems ; Mathematical models ; Numerical analysis ; Partial differential equations ; Stochasticity</subject><ispartof>IMA journal of numerical analysis, 2012-07, Vol.32 (3), p.1051-1070</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-3de147b368ff3586427596b8552c008e4961a33ce99692febd70f7b0c2dad27d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gordon, A. D.</creatorcontrib><creatorcontrib>Powell, C. E.</creatorcontrib><title>On solving stochastic collocation systems with algebraic multigrid</title><title>IMA journal of numerical analysis</title><description>Stochastic collocation methods facilitate the numerical solution of partial differential equations (PDEs) with random data and give rise to long sequences of similar linear systems. When elliptic PDEs with random diffusion coefficients are discretized with mixed finite element methods in the physical domain we obtain saddle point systems. These are trivial to solve when considered individually; the challenge lies in exploiting their similarities to recycle information and minimize the cost of solving the entire sequence. We apply stochastic collocation to a model stochastic elliptic problem and discretize in physical space using Raviart-Thomas elements. We propose an efficient solution strategy for the resulting linear systems that is more robust than any other in the literature. In particular, we show that it is feasible to use finely-tuned algebraic multigrid preconditioning if key set-up information is reused. The proposed solver is robust with respect to variations in the discretization and statistical parameters for stochastically linear and nonlinear data.</description><subject>Algebra</subject><subject>Collocation</subject><subject>Discretization</subject><subject>Linear systems</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Stochasticity</subject><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAYRS0EEqUwsmdkCf38SGyPUPGSKnWBOXJsJzVy4mI7oP57gsJ0h3t0dXUQusVwj0HSjRvUOA0bEyNQdoZWmNWspDUj52gFhJOSSS4v0VVKnwDAag4r9LgfixT8txv7IuWgDyplpwsdvA9aZRfm-pSyHVLx4_KhUL63bVQzMkw-uz46c40uOuWTvfnPNfp4fnrfvpa7_cvb9mFXagoyl9RYzHhLa9F1tBLzLV7JuhVVRTSAsEzWWFGqrZS1JJ1tDYeOt6CJUYZwQ9fobtk9xvA12ZSbwSVtvVejDVNqMAhCsGCCzmi5oDqGlKLtmmOc7cTTDDV_rprFVbO4or9JXF-g</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Gordon, A. D.</creator><creator>Powell, C. E.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120701</creationdate><title>On solving stochastic collocation systems with algebraic multigrid</title><author>Gordon, A. D. ; Powell, C. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-3de147b368ff3586427596b8552c008e4961a33ce99692febd70f7b0c2dad27d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Collocation</topic><topic>Discretization</topic><topic>Linear systems</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, A. D.</creatorcontrib><creatorcontrib>Powell, C. E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, A. D.</au><au>Powell, C. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On solving stochastic collocation systems with algebraic multigrid</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>32</volume><issue>3</issue><spage>1051</spage><epage>1070</epage><pages>1051-1070</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>Stochastic collocation methods facilitate the numerical solution of partial differential equations (PDEs) with random data and give rise to long sequences of similar linear systems. When elliptic PDEs with random diffusion coefficients are discretized with mixed finite element methods in the physical domain we obtain saddle point systems. These are trivial to solve when considered individually; the challenge lies in exploiting their similarities to recycle information and minimize the cost of solving the entire sequence. We apply stochastic collocation to a model stochastic elliptic problem and discretize in physical space using Raviart-Thomas elements. We propose an efficient solution strategy for the resulting linear systems that is more robust than any other in the literature. In particular, we show that it is feasible to use finely-tuned algebraic multigrid preconditioning if key set-up information is reused. The proposed solver is robust with respect to variations in the discretization and statistical parameters for stochastically linear and nonlinear data.</abstract><doi>10.1093/imanum/drr034</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4979
ispartof IMA journal of numerical analysis, 2012-07, Vol.32 (3), p.1051-1070
issn 0272-4979
1464-3642
language eng
recordid cdi_proquest_miscellaneous_1082218483
source Oxford Journals Online
subjects Algebra
Collocation
Discretization
Linear systems
Mathematical models
Numerical analysis
Partial differential equations
Stochasticity
title On solving stochastic collocation systems with algebraic multigrid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20solving%20stochastic%20collocation%20systems%20with%20algebraic%20multigrid&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Gordon,%20A.%20D.&rft.date=2012-07-01&rft.volume=32&rft.issue=3&rft.spage=1051&rft.epage=1070&rft.pages=1051-1070&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/drr034&rft_dat=%3Cproquest_cross%3E1082218483%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-3de147b368ff3586427596b8552c008e4961a33ce99692febd70f7b0c2dad27d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082218483&rft_id=info:pmid/&rfr_iscdi=true