Loading…
On solving stochastic collocation systems with algebraic multigrid
Stochastic collocation methods facilitate the numerical solution of partial differential equations (PDEs) with random data and give rise to long sequences of similar linear systems. When elliptic PDEs with random diffusion coefficients are discretized with mixed finite element methods in the physica...
Saved in:
Published in: | IMA journal of numerical analysis 2012-07, Vol.32 (3), p.1051-1070 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c309t-3de147b368ff3586427596b8552c008e4961a33ce99692febd70f7b0c2dad27d3 |
---|---|
cites | |
container_end_page | 1070 |
container_issue | 3 |
container_start_page | 1051 |
container_title | IMA journal of numerical analysis |
container_volume | 32 |
creator | Gordon, A. D. Powell, C. E. |
description | Stochastic collocation methods facilitate the numerical solution of partial differential equations (PDEs) with random data and give rise to long sequences of similar linear systems. When elliptic PDEs with random diffusion coefficients are discretized with mixed finite element methods in the physical domain we obtain saddle point systems. These are trivial to solve when considered individually; the challenge lies in exploiting their similarities to recycle information and minimize the cost of solving the entire sequence. We apply stochastic collocation to a model stochastic elliptic problem and discretize in physical space using Raviart-Thomas elements. We propose an efficient solution strategy for the resulting linear systems that is more robust than any other in the literature. In particular, we show that it is feasible to use finely-tuned algebraic multigrid preconditioning if key set-up information is reused. The proposed solver is robust with respect to variations in the discretization and statistical parameters for stochastically linear and nonlinear data. |
doi_str_mv | 10.1093/imanum/drr034 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1082218483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082218483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-3de147b368ff3586427596b8552c008e4961a33ce99692febd70f7b0c2dad27d3</originalsourceid><addsrcrecordid>eNotkDtPwzAYRS0EEqUwsmdkCf38SGyPUPGSKnWBOXJsJzVy4mI7oP57gsJ0h3t0dXUQusVwj0HSjRvUOA0bEyNQdoZWmNWspDUj52gFhJOSSS4v0VVKnwDAag4r9LgfixT8txv7IuWgDyplpwsdvA9aZRfm-pSyHVLx4_KhUL63bVQzMkw-uz46c40uOuWTvfnPNfp4fnrfvpa7_cvb9mFXagoyl9RYzHhLa9F1tBLzLV7JuhVVRTSAsEzWWFGqrZS1JJ1tDYeOt6CJUYZwQ9fobtk9xvA12ZSbwSVtvVejDVNqMAhCsGCCzmi5oDqGlKLtmmOc7cTTDDV_rprFVbO4or9JXF-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082218483</pqid></control><display><type>article</type><title>On solving stochastic collocation systems with algebraic multigrid</title><source>Oxford Journals Online</source><creator>Gordon, A. D. ; Powell, C. E.</creator><creatorcontrib>Gordon, A. D. ; Powell, C. E.</creatorcontrib><description>Stochastic collocation methods facilitate the numerical solution of partial differential equations (PDEs) with random data and give rise to long sequences of similar linear systems. When elliptic PDEs with random diffusion coefficients are discretized with mixed finite element methods in the physical domain we obtain saddle point systems. These are trivial to solve when considered individually; the challenge lies in exploiting their similarities to recycle information and minimize the cost of solving the entire sequence. We apply stochastic collocation to a model stochastic elliptic problem and discretize in physical space using Raviart-Thomas elements. We propose an efficient solution strategy for the resulting linear systems that is more robust than any other in the literature. In particular, we show that it is feasible to use finely-tuned algebraic multigrid preconditioning if key set-up information is reused. The proposed solver is robust with respect to variations in the discretization and statistical parameters for stochastically linear and nonlinear data.</description><identifier>ISSN: 0272-4979</identifier><identifier>EISSN: 1464-3642</identifier><identifier>DOI: 10.1093/imanum/drr034</identifier><language>eng</language><subject>Algebra ; Collocation ; Discretization ; Linear systems ; Mathematical models ; Numerical analysis ; Partial differential equations ; Stochasticity</subject><ispartof>IMA journal of numerical analysis, 2012-07, Vol.32 (3), p.1051-1070</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-3de147b368ff3586427596b8552c008e4961a33ce99692febd70f7b0c2dad27d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gordon, A. D.</creatorcontrib><creatorcontrib>Powell, C. E.</creatorcontrib><title>On solving stochastic collocation systems with algebraic multigrid</title><title>IMA journal of numerical analysis</title><description>Stochastic collocation methods facilitate the numerical solution of partial differential equations (PDEs) with random data and give rise to long sequences of similar linear systems. When elliptic PDEs with random diffusion coefficients are discretized with mixed finite element methods in the physical domain we obtain saddle point systems. These are trivial to solve when considered individually; the challenge lies in exploiting their similarities to recycle information and minimize the cost of solving the entire sequence. We apply stochastic collocation to a model stochastic elliptic problem and discretize in physical space using Raviart-Thomas elements. We propose an efficient solution strategy for the resulting linear systems that is more robust than any other in the literature. In particular, we show that it is feasible to use finely-tuned algebraic multigrid preconditioning if key set-up information is reused. The proposed solver is robust with respect to variations in the discretization and statistical parameters for stochastically linear and nonlinear data.</description><subject>Algebra</subject><subject>Collocation</subject><subject>Discretization</subject><subject>Linear systems</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Stochasticity</subject><issn>0272-4979</issn><issn>1464-3642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkDtPwzAYRS0EEqUwsmdkCf38SGyPUPGSKnWBOXJsJzVy4mI7oP57gsJ0h3t0dXUQusVwj0HSjRvUOA0bEyNQdoZWmNWspDUj52gFhJOSSS4v0VVKnwDAag4r9LgfixT8txv7IuWgDyplpwsdvA9aZRfm-pSyHVLx4_KhUL63bVQzMkw-uz46c40uOuWTvfnPNfp4fnrfvpa7_cvb9mFXagoyl9RYzHhLa9F1tBLzLV7JuhVVRTSAsEzWWFGqrZS1JJ1tDYeOt6CJUYZwQ9fobtk9xvA12ZSbwSVtvVejDVNqMAhCsGCCzmi5oDqGlKLtmmOc7cTTDDV_rprFVbO4or9JXF-g</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Gordon, A. D.</creator><creator>Powell, C. E.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120701</creationdate><title>On solving stochastic collocation systems with algebraic multigrid</title><author>Gordon, A. D. ; Powell, C. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-3de147b368ff3586427596b8552c008e4961a33ce99692febd70f7b0c2dad27d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Collocation</topic><topic>Discretization</topic><topic>Linear systems</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, A. D.</creatorcontrib><creatorcontrib>Powell, C. E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IMA journal of numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, A. D.</au><au>Powell, C. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On solving stochastic collocation systems with algebraic multigrid</atitle><jtitle>IMA journal of numerical analysis</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>32</volume><issue>3</issue><spage>1051</spage><epage>1070</epage><pages>1051-1070</pages><issn>0272-4979</issn><eissn>1464-3642</eissn><abstract>Stochastic collocation methods facilitate the numerical solution of partial differential equations (PDEs) with random data and give rise to long sequences of similar linear systems. When elliptic PDEs with random diffusion coefficients are discretized with mixed finite element methods in the physical domain we obtain saddle point systems. These are trivial to solve when considered individually; the challenge lies in exploiting their similarities to recycle information and minimize the cost of solving the entire sequence. We apply stochastic collocation to a model stochastic elliptic problem and discretize in physical space using Raviart-Thomas elements. We propose an efficient solution strategy for the resulting linear systems that is more robust than any other in the literature. In particular, we show that it is feasible to use finely-tuned algebraic multigrid preconditioning if key set-up information is reused. The proposed solver is robust with respect to variations in the discretization and statistical parameters for stochastically linear and nonlinear data.</abstract><doi>10.1093/imanum/drr034</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-4979 |
ispartof | IMA journal of numerical analysis, 2012-07, Vol.32 (3), p.1051-1070 |
issn | 0272-4979 1464-3642 |
language | eng |
recordid | cdi_proquest_miscellaneous_1082218483 |
source | Oxford Journals Online |
subjects | Algebra Collocation Discretization Linear systems Mathematical models Numerical analysis Partial differential equations Stochasticity |
title | On solving stochastic collocation systems with algebraic multigrid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20solving%20stochastic%20collocation%20systems%20with%20algebraic%20multigrid&rft.jtitle=IMA%20journal%20of%20numerical%20analysis&rft.au=Gordon,%20A.%20D.&rft.date=2012-07-01&rft.volume=32&rft.issue=3&rft.spage=1051&rft.epage=1070&rft.pages=1051-1070&rft.issn=0272-4979&rft.eissn=1464-3642&rft_id=info:doi/10.1093/imanum/drr034&rft_dat=%3Cproquest_cross%3E1082218483%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c309t-3de147b368ff3586427596b8552c008e4961a33ce99692febd70f7b0c2dad27d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082218483&rft_id=info:pmid/&rfr_iscdi=true |