Loading…
Self-accelerating self-trapped nonlinear beams of Maxwell's equations
We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, togethe...
Saved in:
Published in: | Optics express 2012-08, Vol.20 (17), p.18827-18835 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c395t-778b8f2c2018d3b6c1617b8cbe646ad92e9103ed12d124b66ef7da3566db0523 |
---|---|
cites | cdi_FETCH-LOGICAL-c395t-778b8f2c2018d3b6c1617b8cbe646ad92e9103ed12d124b66ef7da3566db0523 |
container_end_page | 18835 |
container_issue | 17 |
container_start_page | 18827 |
container_title | Optics express |
container_volume | 20 |
creator | Kaminer, Ido Nemirovsky, Jonathan Segev, Mordechai |
description | We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory. |
doi_str_mv | 10.1364/OE.20.018827 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1093508039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1093508039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-778b8f2c2018d3b6c1617b8cbe646ad92e9103ed12d124b66ef7da3566db0523</originalsourceid><addsrcrecordid>eNpNkMtLw0AQxhdRrFZvniU3PZi6j2R3c5QSH1Dpwd6XfUwkkld3E9T_3i2tIgzMMPzm45sPoSuCF4Tx7H5dLiheYCIlFUfojOAiSzMsxfG_eYbOQ_jAmGSiEKdoRhlmMqf0DJVv0FSpthYa8Hqsu_ck7Daj18MALun6rqk70D4xoNuQ9FXyqr8-oWluQgLbKZ70XbhAJ5VuAlwe-hxtHsvN8jldrZ9elg-r1LIiH1MhpJEVtTS6dcxwSzgRRloDPOPaFRQKghk4QmNlhnOohNMs59wZnFM2R7d72cH32wnCqNo6ROeN7qCfgor_shxLzIqI3u1R6_sQPFRq8HWr_XeE1C43tS4VxWqfW8SvD8qTacH9wb9BsR_SxWeG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093508039</pqid></control><display><type>article</type><title>Self-accelerating self-trapped nonlinear beams of Maxwell's equations</title><source>EZB Electronic Journals Library</source><creator>Kaminer, Ido ; Nemirovsky, Jonathan ; Segev, Mordechai</creator><creatorcontrib>Kaminer, Ido ; Nemirovsky, Jonathan ; Segev, Mordechai</creatorcontrib><description>We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.20.018827</identifier><identifier>PMID: 23038522</identifier><language>eng</language><publisher>United States</publisher><subject>Acceleration ; Computer Simulation ; Electromagnetic Fields ; Light ; Models, Theoretical ; Nonlinear Dynamics ; Scattering, Radiation</subject><ispartof>Optics express, 2012-08, Vol.20 (17), p.18827-18835</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-778b8f2c2018d3b6c1617b8cbe646ad92e9103ed12d124b66ef7da3566db0523</citedby><cites>FETCH-LOGICAL-c395t-778b8f2c2018d3b6c1617b8cbe646ad92e9103ed12d124b66ef7da3566db0523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23038522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaminer, Ido</creatorcontrib><creatorcontrib>Nemirovsky, Jonathan</creatorcontrib><creatorcontrib>Segev, Mordechai</creatorcontrib><title>Self-accelerating self-trapped nonlinear beams of Maxwell's equations</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory.</description><subject>Acceleration</subject><subject>Computer Simulation</subject><subject>Electromagnetic Fields</subject><subject>Light</subject><subject>Models, Theoretical</subject><subject>Nonlinear Dynamics</subject><subject>Scattering, Radiation</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkMtLw0AQxhdRrFZvniU3PZi6j2R3c5QSH1Dpwd6XfUwkkld3E9T_3i2tIgzMMPzm45sPoSuCF4Tx7H5dLiheYCIlFUfojOAiSzMsxfG_eYbOQ_jAmGSiEKdoRhlmMqf0DJVv0FSpthYa8Hqsu_ck7Daj18MALun6rqk70D4xoNuQ9FXyqr8-oWluQgLbKZ70XbhAJ5VuAlwe-hxtHsvN8jldrZ9elg-r1LIiH1MhpJEVtTS6dcxwSzgRRloDPOPaFRQKghk4QmNlhnOohNMs59wZnFM2R7d72cH32wnCqNo6ROeN7qCfgor_shxLzIqI3u1R6_sQPFRq8HWr_XeE1C43tS4VxWqfW8SvD8qTacH9wb9BsR_SxWeG</recordid><startdate>20120813</startdate><enddate>20120813</enddate><creator>Kaminer, Ido</creator><creator>Nemirovsky, Jonathan</creator><creator>Segev, Mordechai</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120813</creationdate><title>Self-accelerating self-trapped nonlinear beams of Maxwell's equations</title><author>Kaminer, Ido ; Nemirovsky, Jonathan ; Segev, Mordechai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-778b8f2c2018d3b6c1617b8cbe646ad92e9103ed12d124b66ef7da3566db0523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Computer Simulation</topic><topic>Electromagnetic Fields</topic><topic>Light</topic><topic>Models, Theoretical</topic><topic>Nonlinear Dynamics</topic><topic>Scattering, Radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaminer, Ido</creatorcontrib><creatorcontrib>Nemirovsky, Jonathan</creatorcontrib><creatorcontrib>Segev, Mordechai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaminer, Ido</au><au>Nemirovsky, Jonathan</au><au>Segev, Mordechai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-accelerating self-trapped nonlinear beams of Maxwell's equations</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2012-08-13</date><risdate>2012</risdate><volume>20</volume><issue>17</issue><spage>18827</spage><epage>18835</epage><pages>18827-18835</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory.</abstract><cop>United States</cop><pmid>23038522</pmid><doi>10.1364/OE.20.018827</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2012-08, Vol.20 (17), p.18827-18835 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_1093508039 |
source | EZB Electronic Journals Library |
subjects | Acceleration Computer Simulation Electromagnetic Fields Light Models, Theoretical Nonlinear Dynamics Scattering, Radiation |
title | Self-accelerating self-trapped nonlinear beams of Maxwell's equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-accelerating%20self-trapped%20nonlinear%20beams%20of%20Maxwell's%20equations&rft.jtitle=Optics%20express&rft.au=Kaminer,%20Ido&rft.date=2012-08-13&rft.volume=20&rft.issue=17&rft.spage=18827&rft.epage=18835&rft.pages=18827-18835&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.20.018827&rft_dat=%3Cproquest_cross%3E1093508039%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-778b8f2c2018d3b6c1617b8cbe646ad92e9103ed12d124b66ef7da3566db0523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1093508039&rft_id=info:pmid/23038522&rfr_iscdi=true |