Loading…

Low-Sample Flow Secondary Electrospray Ionization: Improving Vapor Ionization Efficiency

In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an elecrospray plume become ionized after charge is transferred from the charging electrosprayed particles to the sample species. Current SESI systems have shown a certain potential. However, their ionization efficiency...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2012-10, Vol.84 (20), p.8475-8479
Main Authors: Vidal-de-Miguel, G, Macía, M, Pinacho, P, Blanco, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a410t-83d9d2f700bacb76864993035bbf16921f7e9dd5778067815415b5a25cd985583
cites cdi_FETCH-LOGICAL-a410t-83d9d2f700bacb76864993035bbf16921f7e9dd5778067815415b5a25cd985583
container_end_page 8479
container_issue 20
container_start_page 8475
container_title Analytical chemistry (Washington)
container_volume 84
creator Vidal-de-Miguel, G
Macía, M
Pinacho, P
Blanco, J
description In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an elecrospray plume become ionized after charge is transferred from the charging electrosprayed particles to the sample species. Current SESI systems have shown a certain potential. However, their ionization efficiency is limited by space charge repulsion and by the high sample flows required to prevent vapor dilution. As a result, they have a poor conversion ratio of vapor into ions. We have developed and tested a new SESI configuration, termed low-flow SESI, that permits the reduction of the required sample flows. Although the ion to vapor concentration ratio is limited, the ionic flow to sample vapor flow ratio theoretically is not. The new ionizer is coupled to a planar differential mobility analyzer (DMA) and requires only 0.2 lpm of vapor sample flow to produce 3.5 lpm of ionic flow. The achieved ionization efficiency is 1/700 (one ion for every 700 molecules) for TNT and, thus, compared with previous SESI ionizers coupled with atmospheric pressure ionization-mass spectrometry (API-MS) (Mesonero, E.; Sillero, J. A.; Hernández, M.; Fernandez de la Mora, J. Philadelphia PA, 2009) has been improved by a large factor of at least 50–100 (our measurements indicate 70). The new ionizer coupled with the planar DMA and a triple quadrupole mass spectrometer (ABSciex API5000) requires only 20 fg (50 million molecules) to produce a discernible signal after mobility and MS2 analysis.
doi_str_mv 10.1021/ac3005378
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1112678354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1112678354</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-83d9d2f700bacb76864993035bbf16921f7e9dd5778067815415b5a25cd985583</originalsourceid><addsrcrecordid>eNpl0MtKxDAUBuAgio6XhS8gBRF0UT0nmTSJO5FRBwZceMFdSdNUKm1TkxmH8emNOl7QVRb5cvKfn5BdhGMEiifaMADOhFwhA-QU0kxKukoGAMBSKgA2yGYITwCIgNk62aBUCVAKB-Rh4ubpjW77xiYXjZsnN9a4rtR-kYwaa6behd7rRTJ2Xf2qp7XrTpNx23v3UnePyb3unf91l4yqqja17cxim6xVugl2Z3lukbuL0e35VTq5vhyfn01SPUSYppKVqqRVzFhoU4hMZkOlGDBeFBVmimIlrCpLLoSETEjkQ-QF15SbUknOJdsih59zY6bnmQ3TvK2DsU2jO-tmIUdEGh8yPox0_w99cjPfxXQfSiiRURbV0acycffgbZX3vm5jITlC_l53_l13tHvLibOiteW3_Oo3goMl0MHopvK6M3X4cRmHuLP6cdqEX6n-ffgG8jaQug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112797623</pqid></control><display><type>article</type><title>Low-Sample Flow Secondary Electrospray Ionization: Improving Vapor Ionization Efficiency</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Vidal-de-Miguel, G ; Macía, M ; Pinacho, P ; Blanco, J</creator><creatorcontrib>Vidal-de-Miguel, G ; Macía, M ; Pinacho, P ; Blanco, J</creatorcontrib><description>In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an elecrospray plume become ionized after charge is transferred from the charging electrosprayed particles to the sample species. Current SESI systems have shown a certain potential. However, their ionization efficiency is limited by space charge repulsion and by the high sample flows required to prevent vapor dilution. As a result, they have a poor conversion ratio of vapor into ions. We have developed and tested a new SESI configuration, termed low-flow SESI, that permits the reduction of the required sample flows. Although the ion to vapor concentration ratio is limited, the ionic flow to sample vapor flow ratio theoretically is not. The new ionizer is coupled to a planar differential mobility analyzer (DMA) and requires only 0.2 lpm of vapor sample flow to produce 3.5 lpm of ionic flow. The achieved ionization efficiency is 1/700 (one ion for every 700 molecules) for TNT and, thus, compared with previous SESI ionizers coupled with atmospheric pressure ionization-mass spectrometry (API-MS) (Mesonero, E.; Sillero, J. A.; Hernández, M.; Fernandez de la Mora, J. Philadelphia PA, 2009) has been improved by a large factor of at least 50–100 (our measurements indicate 70). The new ionizer coupled with the planar DMA and a triple quadrupole mass spectrometer (ABSciex API5000) requires only 20 fg (50 million molecules) to produce a discernible signal after mobility and MS2 analysis.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac3005378</identifier><identifier>PMID: 22970991</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Atmospheric pressure ; Charged particles ; Chemistry ; Exact sciences and technology ; Ions ; Mass spectrometry ; Molecules ; Spectrometric and optical methods</subject><ispartof>Analytical chemistry (Washington), 2012-10, Vol.84 (20), p.8475-8479</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 16, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-83d9d2f700bacb76864993035bbf16921f7e9dd5778067815415b5a25cd985583</citedby><cites>FETCH-LOGICAL-a410t-83d9d2f700bacb76864993035bbf16921f7e9dd5778067815415b5a25cd985583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26507689$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22970991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidal-de-Miguel, G</creatorcontrib><creatorcontrib>Macía, M</creatorcontrib><creatorcontrib>Pinacho, P</creatorcontrib><creatorcontrib>Blanco, J</creatorcontrib><title>Low-Sample Flow Secondary Electrospray Ionization: Improving Vapor Ionization Efficiency</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an elecrospray plume become ionized after charge is transferred from the charging electrosprayed particles to the sample species. Current SESI systems have shown a certain potential. However, their ionization efficiency is limited by space charge repulsion and by the high sample flows required to prevent vapor dilution. As a result, they have a poor conversion ratio of vapor into ions. We have developed and tested a new SESI configuration, termed low-flow SESI, that permits the reduction of the required sample flows. Although the ion to vapor concentration ratio is limited, the ionic flow to sample vapor flow ratio theoretically is not. The new ionizer is coupled to a planar differential mobility analyzer (DMA) and requires only 0.2 lpm of vapor sample flow to produce 3.5 lpm of ionic flow. The achieved ionization efficiency is 1/700 (one ion for every 700 molecules) for TNT and, thus, compared with previous SESI ionizers coupled with atmospheric pressure ionization-mass spectrometry (API-MS) (Mesonero, E.; Sillero, J. A.; Hernández, M.; Fernandez de la Mora, J. Philadelphia PA, 2009) has been improved by a large factor of at least 50–100 (our measurements indicate 70). The new ionizer coupled with the planar DMA and a triple quadrupole mass spectrometer (ABSciex API5000) requires only 20 fg (50 million molecules) to produce a discernible signal after mobility and MS2 analysis.</description><subject>Analytical chemistry</subject><subject>Atmospheric pressure</subject><subject>Charged particles</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Ions</subject><subject>Mass spectrometry</subject><subject>Molecules</subject><subject>Spectrometric and optical methods</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpl0MtKxDAUBuAgio6XhS8gBRF0UT0nmTSJO5FRBwZceMFdSdNUKm1TkxmH8emNOl7QVRb5cvKfn5BdhGMEiifaMADOhFwhA-QU0kxKukoGAMBSKgA2yGYITwCIgNk62aBUCVAKB-Rh4ubpjW77xiYXjZsnN9a4rtR-kYwaa6behd7rRTJ2Xf2qp7XrTpNx23v3UnePyb3unf91l4yqqja17cxim6xVugl2Z3lukbuL0e35VTq5vhyfn01SPUSYppKVqqRVzFhoU4hMZkOlGDBeFBVmimIlrCpLLoSETEjkQ-QF15SbUknOJdsih59zY6bnmQ3TvK2DsU2jO-tmIUdEGh8yPox0_w99cjPfxXQfSiiRURbV0acycffgbZX3vm5jITlC_l53_l13tHvLibOiteW3_Oo3goMl0MHopvK6M3X4cRmHuLP6cdqEX6n-ffgG8jaQug</recordid><startdate>20121016</startdate><enddate>20121016</enddate><creator>Vidal-de-Miguel, G</creator><creator>Macía, M</creator><creator>Pinacho, P</creator><creator>Blanco, J</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20121016</creationdate><title>Low-Sample Flow Secondary Electrospray Ionization: Improving Vapor Ionization Efficiency</title><author>Vidal-de-Miguel, G ; Macía, M ; Pinacho, P ; Blanco, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-83d9d2f700bacb76864993035bbf16921f7e9dd5778067815415b5a25cd985583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analytical chemistry</topic><topic>Atmospheric pressure</topic><topic>Charged particles</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Ions</topic><topic>Mass spectrometry</topic><topic>Molecules</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidal-de-Miguel, G</creatorcontrib><creatorcontrib>Macía, M</creatorcontrib><creatorcontrib>Pinacho, P</creatorcontrib><creatorcontrib>Blanco, J</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidal-de-Miguel, G</au><au>Macía, M</au><au>Pinacho, P</au><au>Blanco, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Sample Flow Secondary Electrospray Ionization: Improving Vapor Ionization Efficiency</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2012-10-16</date><risdate>2012</risdate><volume>84</volume><issue>20</issue><spage>8475</spage><epage>8479</epage><pages>8475-8479</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an elecrospray plume become ionized after charge is transferred from the charging electrosprayed particles to the sample species. Current SESI systems have shown a certain potential. However, their ionization efficiency is limited by space charge repulsion and by the high sample flows required to prevent vapor dilution. As a result, they have a poor conversion ratio of vapor into ions. We have developed and tested a new SESI configuration, termed low-flow SESI, that permits the reduction of the required sample flows. Although the ion to vapor concentration ratio is limited, the ionic flow to sample vapor flow ratio theoretically is not. The new ionizer is coupled to a planar differential mobility analyzer (DMA) and requires only 0.2 lpm of vapor sample flow to produce 3.5 lpm of ionic flow. The achieved ionization efficiency is 1/700 (one ion for every 700 molecules) for TNT and, thus, compared with previous SESI ionizers coupled with atmospheric pressure ionization-mass spectrometry (API-MS) (Mesonero, E.; Sillero, J. A.; Hernández, M.; Fernandez de la Mora, J. Philadelphia PA, 2009) has been improved by a large factor of at least 50–100 (our measurements indicate 70). The new ionizer coupled with the planar DMA and a triple quadrupole mass spectrometer (ABSciex API5000) requires only 20 fg (50 million molecules) to produce a discernible signal after mobility and MS2 analysis.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22970991</pmid><doi>10.1021/ac3005378</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2012-10, Vol.84 (20), p.8475-8479
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1112678354
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Analytical chemistry
Atmospheric pressure
Charged particles
Chemistry
Exact sciences and technology
Ions
Mass spectrometry
Molecules
Spectrometric and optical methods
title Low-Sample Flow Secondary Electrospray Ionization: Improving Vapor Ionization Efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Sample%20Flow%20Secondary%20Electrospray%20Ionization:%20Improving%20Vapor%20Ionization%20Efficiency&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Vidal-de-Miguel,%20G&rft.date=2012-10-16&rft.volume=84&rft.issue=20&rft.spage=8475&rft.epage=8479&rft.pages=8475-8479&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac3005378&rft_dat=%3Cproquest_cross%3E1112678354%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a410t-83d9d2f700bacb76864993035bbf16921f7e9dd5778067815415b5a25cd985583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1112797623&rft_id=info:pmid/22970991&rfr_iscdi=true