Loading…

A portable and autonomous multichannel fluorescence detector for on-line and in situ explosive detection in aqueous phase

A multichannel fluorescence detector used to detect nitroaromatic explosives in aqueous phase has been developed, which is composed of a five-channel sample-sensor unit, a measurement and control unit, a microcontroller, and a communication unit. The characteristics of the detector as developed are...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2012-11, Vol.12 (22), p.4821-4828
Main Authors: Xin, Yunhong, Wang, Qi, Liu, Taihong, Wang, Lingling, Li, Jia, Fang, Yu
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A multichannel fluorescence detector used to detect nitroaromatic explosives in aqueous phase has been developed, which is composed of a five-channel sample-sensor unit, a measurement and control unit, a microcontroller, and a communication unit. The characteristics of the detector as developed are mainly embedded in the sensor unit, and each sensor consists of a fluorescent sensing film, a light emitting diode (LED), a multi-pixel photon counter (MPPC), and an optical module with special bandpass optical filters. Due to the high sensitivity of the sensing film, the small size and low cost of LED and MPPC, the developed detector not only has a better detecting performance and small size, but also has a very low cost - it is an alternative to the device made with an expensive high power lamp and photomultiplier tube. The wavelengths of the five sensors covered extend from the upper UV through the visible spectrum, 370-640 nm, and thereby it possesses the potential to detect a variety of explosives and other hazardous materials in aqueous phase. An additional function of the detector is its ability to function via a wireless network, by which the data recorded by the detector can be sent to the host computer, and at the same time the instructions can be sent to the detector from the host computer. By means of the powerful computing ability of the host computer, and utilizing the classical principal component analysis (PCA) algorithm, effective classification of the analytes is achieved. Furthermore, the detector has been tested and evaluated using NB, PA, TNT and DNT as the analytes, and toluene, benzene, methanol and ethanol as interferent compounds (concentration various from 10 and 60 μM). It has been shown that the detector can detect the four nitroaromatics with high sensitivity and selectivity.
ISSN:1473-0197
1473-0189
DOI:10.1039/c2lc40804j