Loading…

Zooxanthellae that open calcium channels: implications for reef corals

Toxins that open cell membrane calcium channels have been found in the dinoflagellate genusSymbiodinium, and likely occur in most zooxanthellae. I used published observations to examine some potentially far-reaching consequences to reef corals. Algal toxins may stimulate coral calcification by openi...

Full description

Saved in:
Bibliographic Details
Published in:Marine ecology. Progress series (Halstenbek) 2012-07, Vol.460, p.277-287
Main Author: McConnaughey, Ted A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-46f00d34775c2194a8012f966d876c8cae7ec99df2ee14ea57b2c9c80667b02b3
cites cdi_FETCH-LOGICAL-c319t-46f00d34775c2194a8012f966d876c8cae7ec99df2ee14ea57b2c9c80667b02b3
container_end_page 287
container_issue
container_start_page 277
container_title Marine ecology. Progress series (Halstenbek)
container_volume 460
creator McConnaughey, Ted A.
description Toxins that open cell membrane calcium channels have been found in the dinoflagellate genusSymbiodinium, and likely occur in most zooxanthellae. I used published observations to examine some potentially far-reaching consequences to reef corals. Algal toxins may stimulate coral calcification by opening Ca2+channels on the calcifying ectoderm. The coral discharges the resulting protons (Ca2++ HCO₃⁻ → CaCO₃⁺ H+) into its coelenteron cavity, where they improve algal bicarbonate and nutrient assimilation. Coupling calcification with autotrophic physiologies contributes to the success of highly calcareous zooxanthellar symbioses, and to their associations with nutrient-poor tropical waters. Nutrient shortages freeze zooxanthellae in the G1 phase of the cell cycle. Dinoflagellates are often most toxic at such times, perhaps because toxins modulate their nuclear mix of cations, to control DNA conformation and activity. Increased Ca2+influx into host cells disrupts cell adhesion and induces apoptosis. Zooxanthellae assimilate host nutrients, complete G1, divide, and disperse to new hosts. Nutrient shortages associate with high sea surface temperatures (SST), producing correlations between SST, calcification, and algal exit. Zooxanthellae proliferate when nutrients are abundant, but when nutrients later disappear, usually as SST warms, toxins and the departure of over-abundant zooxanthellae potentially overwhelm the coral and cause coral bleaching.
doi_str_mv 10.3354/meps09776
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1113222753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24876378</jstor_id><sourcerecordid>24876378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-46f00d34775c2194a8012f966d876c8cae7ec99df2ee14ea57b2c9c80667b02b3</originalsourceid><addsrcrecordid>eNo90M1KxDAUBeAgCtbRhQ8gdDkuqrlJmp-lDI4KA2504yak6S3t0Da1aUHf3hkqszqbj8PhEHIL9IHzXDx2OERqlJJnJAEJMoPcmHOSUFCQacnpJbmKcU8pSKFkQtZfIfy4fqqxbR2mU-2mNAzYp961vpm71Neu77GN1-Sicm3Em_9ckc_t88fmNdu9v7xtnnaZ52CmTMiK0pILpXLPwAinKbDKSFlqJb32DhV6Y8qKIYJAl6uCeeM1lVIVlBV8RdZL7zCG7xnjZLsm-uO6HsMcLQBwxpjK-YHeL9SPIcYRKzuMTefGXwvUHt-wpzcO9m6x-ziF8QSZOMziSvM_fOlbIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113222753</pqid></control><display><type>article</type><title>Zooxanthellae that open calcium channels: implications for reef corals</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>McConnaughey, Ted A.</creator><creatorcontrib>McConnaughey, Ted A.</creatorcontrib><description>Toxins that open cell membrane calcium channels have been found in the dinoflagellate genusSymbiodinium, and likely occur in most zooxanthellae. I used published observations to examine some potentially far-reaching consequences to reef corals. Algal toxins may stimulate coral calcification by opening Ca2+channels on the calcifying ectoderm. The coral discharges the resulting protons (Ca2++ HCO₃⁻ → CaCO₃⁺ H+) into its coelenteron cavity, where they improve algal bicarbonate and nutrient assimilation. Coupling calcification with autotrophic physiologies contributes to the success of highly calcareous zooxanthellar symbioses, and to their associations with nutrient-poor tropical waters. Nutrient shortages freeze zooxanthellae in the G1 phase of the cell cycle. Dinoflagellates are often most toxic at such times, perhaps because toxins modulate their nuclear mix of cations, to control DNA conformation and activity. Increased Ca2+influx into host cells disrupts cell adhesion and induces apoptosis. Zooxanthellae assimilate host nutrients, complete G1, divide, and disperse to new hosts. Nutrient shortages associate with high sea surface temperatures (SST), producing correlations between SST, calcification, and algal exit. Zooxanthellae proliferate when nutrients are abundant, but when nutrients later disappear, usually as SST warms, toxins and the departure of over-abundant zooxanthellae potentially overwhelm the coral and cause coral bleaching.</description><identifier>ISSN: 0171-8630</identifier><identifier>EISSN: 1616-1599</identifier><identifier>DOI: 10.3354/meps09776</identifier><language>eng</language><publisher>Inter-Research</publisher><subject>Algae ; Bleaching ; Carbon dioxide ; Cell cycle ; Coral reefs ; Corals ; Marine ; Nutrients ; Photosynthesis ; REVIEW ; Symbiodinium ; Symbiosis ; Toxins</subject><ispartof>Marine ecology. Progress series (Halstenbek), 2012-07, Vol.460, p.277-287</ispartof><rights>Inter-Research 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-46f00d34775c2194a8012f966d876c8cae7ec99df2ee14ea57b2c9c80667b02b3</citedby><cites>FETCH-LOGICAL-c319t-46f00d34775c2194a8012f966d876c8cae7ec99df2ee14ea57b2c9c80667b02b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24876378$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24876378$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>McConnaughey, Ted A.</creatorcontrib><title>Zooxanthellae that open calcium channels: implications for reef corals</title><title>Marine ecology. Progress series (Halstenbek)</title><description>Toxins that open cell membrane calcium channels have been found in the dinoflagellate genusSymbiodinium, and likely occur in most zooxanthellae. I used published observations to examine some potentially far-reaching consequences to reef corals. Algal toxins may stimulate coral calcification by opening Ca2+channels on the calcifying ectoderm. The coral discharges the resulting protons (Ca2++ HCO₃⁻ → CaCO₃⁺ H+) into its coelenteron cavity, where they improve algal bicarbonate and nutrient assimilation. Coupling calcification with autotrophic physiologies contributes to the success of highly calcareous zooxanthellar symbioses, and to their associations with nutrient-poor tropical waters. Nutrient shortages freeze zooxanthellae in the G1 phase of the cell cycle. Dinoflagellates are often most toxic at such times, perhaps because toxins modulate their nuclear mix of cations, to control DNA conformation and activity. Increased Ca2+influx into host cells disrupts cell adhesion and induces apoptosis. Zooxanthellae assimilate host nutrients, complete G1, divide, and disperse to new hosts. Nutrient shortages associate with high sea surface temperatures (SST), producing correlations between SST, calcification, and algal exit. Zooxanthellae proliferate when nutrients are abundant, but when nutrients later disappear, usually as SST warms, toxins and the departure of over-abundant zooxanthellae potentially overwhelm the coral and cause coral bleaching.</description><subject>Algae</subject><subject>Bleaching</subject><subject>Carbon dioxide</subject><subject>Cell cycle</subject><subject>Coral reefs</subject><subject>Corals</subject><subject>Marine</subject><subject>Nutrients</subject><subject>Photosynthesis</subject><subject>REVIEW</subject><subject>Symbiodinium</subject><subject>Symbiosis</subject><subject>Toxins</subject><issn>0171-8630</issn><issn>1616-1599</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo90M1KxDAUBeAgCtbRhQ8gdDkuqrlJmp-lDI4KA2504yak6S3t0Da1aUHf3hkqszqbj8PhEHIL9IHzXDx2OERqlJJnJAEJMoPcmHOSUFCQacnpJbmKcU8pSKFkQtZfIfy4fqqxbR2mU-2mNAzYp961vpm71Neu77GN1-Sicm3Em_9ckc_t88fmNdu9v7xtnnaZ52CmTMiK0pILpXLPwAinKbDKSFlqJb32DhV6Y8qKIYJAl6uCeeM1lVIVlBV8RdZL7zCG7xnjZLsm-uO6HsMcLQBwxpjK-YHeL9SPIcYRKzuMTefGXwvUHt-wpzcO9m6x-ziF8QSZOMziSvM_fOlbIw</recordid><startdate>20120724</startdate><enddate>20120724</enddate><creator>McConnaughey, Ted A.</creator><general>Inter-Research</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SN</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>20120724</creationdate><title>Zooxanthellae that open calcium channels</title><author>McConnaughey, Ted A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-46f00d34775c2194a8012f966d876c8cae7ec99df2ee14ea57b2c9c80667b02b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algae</topic><topic>Bleaching</topic><topic>Carbon dioxide</topic><topic>Cell cycle</topic><topic>Coral reefs</topic><topic>Corals</topic><topic>Marine</topic><topic>Nutrients</topic><topic>Photosynthesis</topic><topic>REVIEW</topic><topic>Symbiodinium</topic><topic>Symbiosis</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McConnaughey, Ted A.</creatorcontrib><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McConnaughey, Ted A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zooxanthellae that open calcium channels: implications for reef corals</atitle><jtitle>Marine ecology. Progress series (Halstenbek)</jtitle><date>2012-07-24</date><risdate>2012</risdate><volume>460</volume><spage>277</spage><epage>287</epage><pages>277-287</pages><issn>0171-8630</issn><eissn>1616-1599</eissn><abstract>Toxins that open cell membrane calcium channels have been found in the dinoflagellate genusSymbiodinium, and likely occur in most zooxanthellae. I used published observations to examine some potentially far-reaching consequences to reef corals. Algal toxins may stimulate coral calcification by opening Ca2+channels on the calcifying ectoderm. The coral discharges the resulting protons (Ca2++ HCO₃⁻ → CaCO₃⁺ H+) into its coelenteron cavity, where they improve algal bicarbonate and nutrient assimilation. Coupling calcification with autotrophic physiologies contributes to the success of highly calcareous zooxanthellar symbioses, and to their associations with nutrient-poor tropical waters. Nutrient shortages freeze zooxanthellae in the G1 phase of the cell cycle. Dinoflagellates are often most toxic at such times, perhaps because toxins modulate their nuclear mix of cations, to control DNA conformation and activity. Increased Ca2+influx into host cells disrupts cell adhesion and induces apoptosis. Zooxanthellae assimilate host nutrients, complete G1, divide, and disperse to new hosts. Nutrient shortages associate with high sea surface temperatures (SST), producing correlations between SST, calcification, and algal exit. Zooxanthellae proliferate when nutrients are abundant, but when nutrients later disappear, usually as SST warms, toxins and the departure of over-abundant zooxanthellae potentially overwhelm the coral and cause coral bleaching.</abstract><pub>Inter-Research</pub><doi>10.3354/meps09776</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0171-8630
ispartof Marine ecology. Progress series (Halstenbek), 2012-07, Vol.460, p.277-287
issn 0171-8630
1616-1599
language eng
recordid cdi_proquest_miscellaneous_1113222753
source JSTOR Archival Journals and Primary Sources Collection
subjects Algae
Bleaching
Carbon dioxide
Cell cycle
Coral reefs
Corals
Marine
Nutrients
Photosynthesis
REVIEW
Symbiodinium
Symbiosis
Toxins
title Zooxanthellae that open calcium channels: implications for reef corals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zooxanthellae%20that%20open%20calcium%20channels:%20implications%20for%20reef%20corals&rft.jtitle=Marine%20ecology.%20Progress%20series%20(Halstenbek)&rft.au=McConnaughey,%20Ted%20A.&rft.date=2012-07-24&rft.volume=460&rft.spage=277&rft.epage=287&rft.pages=277-287&rft.issn=0171-8630&rft.eissn=1616-1599&rft_id=info:doi/10.3354/meps09776&rft_dat=%3Cjstor_proqu%3E24876378%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-46f00d34775c2194a8012f966d876c8cae7ec99df2ee14ea57b2c9c80667b02b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1113222753&rft_id=info:pmid/&rft_jstor_id=24876378&rfr_iscdi=true