Loading…

Top-down versus bottom-up forcing: evidence from mountain lions and mule deer

We studied mountain lions (Puma concolor) and mule deer (Odocoileus hemionus) inhabiting a Great Basin ecosystem in Round Valley, California, to make inferences concerning predator–prey dynamics. Our purpose was to evaluate the relative role of top-down and bottom-up forcing on mule deer in this mul...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mammalogy 2012-08, Vol.93 (4), p.977-988
Main Authors: Pierce, Becky M., Bleich, Vernon C., Monteith, Kevin L., Bowyer, R. Terry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We studied mountain lions (Puma concolor) and mule deer (Odocoileus hemionus) inhabiting a Great Basin ecosystem in Round Valley, California, to make inferences concerning predator–prey dynamics. Our purpose was to evaluate the relative role of top-down and bottom-up forcing on mule deer in this multiple-predator, multiple-prey system. We identified a period of decline (by 83%) of mule deer (1984–1990), and then a period of slow but steady increase (1991–1998). For mule deer, bitterbrush (Purshia tridentata) in diets, per capita availability of bitterbrush, kidney fat indexes, fetal rates (young per adult female), fetal weights, and survivorship of adults and young indicated that the period of decline was typical of a deer population near or above the carrying capacity (K) of its environment. Numbers of mountain lions also declined, but with a long time lag. The period of increase was typified by deer displaying life-history characteristics of a population below K, yet the finite rate of growth (λ = 1.10) remained below what would be expected for a population rebounding rapidly toward K (λ = 1.15–1.21) in the absence of limiting factors. Life-history characteristics were consistent with the mule deer population being regulated by bottom-up forcing through environmental effects on forage availability relative to population density; however, predation, mostly by mountain lions, was likely additive during the period of increase and thus, top-down forcing slowed but did not prevent population growth of mule deer. These outcomes indicate that resource availability (bottom-up processes) has an ever-present effect on dynamics of herbivore populations, but that the relationship can be altered by top-down effects. Indeed, top-down and bottom-up forces can act on populations simultaneously and, thus, should not be viewed as a stark dichotomy.
ISSN:0022-2372
1545-1542
1545-1542
DOI:10.1644/12-mamm-a-014.1