Loading…
Development of waste gasification and gas reforming system for municipal solid waste (MSW)
To achieve both high-efficiency power generation and high detoxification performance, advanced-type waste power generation plants such as pyrolysis and gas reforming plants are suggested. Further surveys on actual operational data of these plants are required in terms of reliability of the system wh...
Saved in:
Published in: | Journal of material cycles and waste management 2012-09, Vol.14 (3), p.153-161 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To achieve both high-efficiency power generation and high detoxification performance, advanced-type waste power generation plants such as pyrolysis and gas reforming plants are suggested. Further surveys on actual operational data of these plants are required in terms of reliability of the system when it is introduced to waste disposal sites. To verify the technical effectiveness of advanced-type waste power generation using the pyrolysis and gas reforming method, we evaluated 10 tons/day of municipal solid wastes (MSW) treated in a demonstration plant. A demonstration test was conducted over 100 days including 35 consecutive days of operation treating MSWs. The test results show high recycling performance and harmless nature of the plant which proves it to be an excellent waste recycling system. Major test results are as follows: (1) stabilization of waste treatment is possible with the wastes of various qualities, (2) clean gas is produced from the waste whose energy recovery ratio is approximately 40 %. (3) 99.3 % weight % of dried waste are recovered as valuable materials such as clean gas, char and metal, (4) total amount of dioxin emission to the outside of the plant is very small, down to 0.0051–0.018 μg TEQ per ton waste. |
---|---|
ISSN: | 1438-4957 1611-8227 |
DOI: | 10.1007/s10163-012-0051-3 |