Loading…

Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion

Glyphosate (Glyp) had been used to modify the surface of CdTe/CdS QDs, resulting in the enhancement of fluorescence intensity. The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu2+ based on the fluorescence quenching. [Display omitted] ► Water solub...

Full description

Saved in:
Bibliographic Details
Published in:Analytica chimica acta 2012-10, Vol.745, p.78-84
Main Authors: Liu, Zhengqing, Liu, Shaopu, Yin, Pengfei, He, Youqiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glyphosate (Glyp) had been used to modify the surface of CdTe/CdS QDs, resulting in the enhancement of fluorescence intensity. The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu2+ based on the fluorescence quenching. [Display omitted] ► Water soluble CdTe/CdS quantum dots capped with glyphosate were firstly synthesized. ► The fluorescence of the Glyp-functionalized QDs was quenched by copper ion. ► A new fluorescent sensor for copper ion was developed based on the prepared QDs. ► The sensor exhibited high sensitivity and good selectivity for copper ion. A novel fluorescent probe for Cu2+ determination based on the fluorescence quenching of glyphosate (Glyp)-functionalized quantum dots (QDs) was firstly reported. Glyp had been used to modify the surface of QDs to form Glyp-functionalized QDs following the capping of thioglycolic acid on the core–shell CdTe/CdS QDs. Under the optimal conditions, the response was linearly proportional to the concentration of Cu2+ between 2.4×10−2μgmL−1 and 28μgmL−1, with a detection limit of 1.3×10−3μgmL−1 (3δ). The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu2+. The fluorescent probe was successfully used for the determination of Cu2+ in environmental samples. The mechanism of reaction was also discussed.
ISSN:0003-2670
1873-4324
DOI:10.1016/j.aca.2012.07.033