Loading…

Improved Regression Calibration

The likelihood for generalized linear models with covariate measurement error cannot in general be expressed in closed form, which makes maximum likelihood estimation taxing. A popular alternative is regression calibration which is computationally efficient at the cost of inconsistent estimation. We...

Full description

Saved in:
Bibliographic Details
Published in:Psychometrika 2012-10, Vol.77 (4), p.649-669
Main Authors: Skrondal, Anders, Kuha, Jouni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-c4cb15188987c6d2637e416ff6da3ffef47c0fc867fe34c2d5671421e03131ca3
cites cdi_FETCH-LOGICAL-c443t-c4cb15188987c6d2637e416ff6da3ffef47c0fc867fe34c2d5671421e03131ca3
container_end_page 669
container_issue 4
container_start_page 649
container_title Psychometrika
container_volume 77
creator Skrondal, Anders
Kuha, Jouni
description The likelihood for generalized linear models with covariate measurement error cannot in general be expressed in closed form, which makes maximum likelihood estimation taxing. A popular alternative is regression calibration which is computationally efficient at the cost of inconsistent estimation. We propose an improved regression calibration approach, a general pseudo maximum likelihood estimation method based on a conveniently decomposed form of the likelihood. It is both consistent and computationally efficient, and produces point estimates and estimated standard errors which are practically identical to those obtained by maximum likelihood. Simulations suggest that improved regression calibration, which is easy to implement in standard software, works well in a range of situations.
doi_str_mv 10.1007/s11336-012-9285-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1125237553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ983213</ericid><sourcerecordid>1125237553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c4cb15188987c6d2637e416ff6da3ffef47c0fc867fe34c2d5671421e03131ca3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_QBAURPCyOpPJZrNHKVUrBUH0HNI0KVu2uzVpBf-9WbYUEbxkAu-bN4_H2DnCHQIU9xGRSGaAPCu5yjM8YANUEjIoFRyyAQBRRsjpmJ3EuASAEpUasMvJah3aLze_enOL4GKs2uZqZOpqFswm_U_ZkTd1dGe7OWQfj-P30XM2fX2ajB6mmRWCNum1M8yTY6kKK-dcUuEESu_l3JD3zovCgrdKFt6RsHyeywIFRweEhNbQkN32vinN59bFjV5V0bq6No1rt1Ej8pxTkeeU0Os_6LLdhialS1RyKyWpjsKesqGNMTiv16FamfCtEXRXme4r06ky3VWmMe3c7JxNtKb2wTS2ivtFLiVJITruoudcqOxeHr-Uijh2p3kvxyQ1Cxd-Bfz39g_FuIGx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113196383</pqid></control><display><type>article</type><title>Improved Regression Calibration</title><source>Social Science Premium Collection</source><source>ProQuest ABI/INFORM Global</source><source>Springer Link</source><source>ERIC</source><source>Education Collection</source><creator>Skrondal, Anders ; Kuha, Jouni</creator><creatorcontrib>Skrondal, Anders ; Kuha, Jouni</creatorcontrib><description>The likelihood for generalized linear models with covariate measurement error cannot in general be expressed in closed form, which makes maximum likelihood estimation taxing. A popular alternative is regression calibration which is computationally efficient at the cost of inconsistent estimation. We propose an improved regression calibration approach, a general pseudo maximum likelihood estimation method based on a conveniently decomposed form of the likelihood. It is both consistent and computationally efficient, and produces point estimates and estimated standard errors which are practically identical to those obtained by maximum likelihood. Simulations suggest that improved regression calibration, which is easy to implement in standard software, works well in a range of situations.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/s11336-012-9285-1</identifier><identifier>CODEN: PSMTA2</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Assessment ; Behavioral Science and Psychology ; Biological and medical sciences ; Calibration ; Computation ; Computer Simulation ; Computer Software ; Data Analysis ; Epidemiology ; Error of Measurement ; Fundamental and applied biological sciences. Psychology ; Generalized linear models ; Humanities ; Indexing in process ; Law ; Maximum Likelihood Statistics ; Psychology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics ; Psychometrics. Statistics. Methodology ; Public health ; Regression (Statistics) ; Statistical Theory and Methods ; Statistics for Social Sciences ; Statistics. Mathematics ; Testing and Evaluation</subject><ispartof>Psychometrika, 2012-10, Vol.77 (4), p.649-669</ispartof><rights>The Psychometric Society 2012</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c4cb15188987c6d2637e416ff6da3ffef47c0fc867fe34c2d5671421e03131ca3</citedby><cites>FETCH-LOGICAL-c443t-c4cb15188987c6d2637e416ff6da3ffef47c0fc867fe34c2d5671421e03131ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1113196383/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1113196383?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,21378,21394,27924,27925,33611,33612,33877,33878,36060,36061,43733,43880,44363,74221,74397,74895</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ983213$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26636441$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Skrondal, Anders</creatorcontrib><creatorcontrib>Kuha, Jouni</creatorcontrib><title>Improved Regression Calibration</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><description>The likelihood for generalized linear models with covariate measurement error cannot in general be expressed in closed form, which makes maximum likelihood estimation taxing. A popular alternative is regression calibration which is computationally efficient at the cost of inconsistent estimation. We propose an improved regression calibration approach, a general pseudo maximum likelihood estimation method based on a conveniently decomposed form of the likelihood. It is both consistent and computationally efficient, and produces point estimates and estimated standard errors which are practically identical to those obtained by maximum likelihood. Simulations suggest that improved regression calibration, which is easy to implement in standard software, works well in a range of situations.</description><subject>Assessment</subject><subject>Behavioral Science and Psychology</subject><subject>Biological and medical sciences</subject><subject>Calibration</subject><subject>Computation</subject><subject>Computer Simulation</subject><subject>Computer Software</subject><subject>Data Analysis</subject><subject>Epidemiology</subject><subject>Error of Measurement</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalized linear models</subject><subject>Humanities</subject><subject>Indexing in process</subject><subject>Law</subject><subject>Maximum Likelihood Statistics</subject><subject>Psychology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Public health</subject><subject>Regression (Statistics)</subject><subject>Statistical Theory and Methods</subject><subject>Statistics for Social Sciences</subject><subject>Statistics. Mathematics</subject><subject>Testing and Evaluation</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><sourceid>ALSLI</sourceid><sourceid>CJNVE</sourceid><sourceid>M0C</sourceid><sourceid>M0P</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_QBAURPCyOpPJZrNHKVUrBUH0HNI0KVu2uzVpBf-9WbYUEbxkAu-bN4_H2DnCHQIU9xGRSGaAPCu5yjM8YANUEjIoFRyyAQBRRsjpmJ3EuASAEpUasMvJah3aLze_enOL4GKs2uZqZOpqFswm_U_ZkTd1dGe7OWQfj-P30XM2fX2ajB6mmRWCNum1M8yTY6kKK-dcUuEESu_l3JD3zovCgrdKFt6RsHyeywIFRweEhNbQkN32vinN59bFjV5V0bq6No1rt1Ej8pxTkeeU0Os_6LLdhialS1RyKyWpjsKesqGNMTiv16FamfCtEXRXme4r06ky3VWmMe3c7JxNtKb2wTS2ivtFLiVJITruoudcqOxeHr-Uijh2p3kvxyQ1Cxd-Bfz39g_FuIGx</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Skrondal, Anders</creator><creator>Kuha, Jouni</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88B</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0P</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20121001</creationdate><title>Improved Regression Calibration</title><author>Skrondal, Anders ; Kuha, Jouni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c4cb15188987c6d2637e416ff6da3ffef47c0fc867fe34c2d5671421e03131ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Assessment</topic><topic>Behavioral Science and Psychology</topic><topic>Biological and medical sciences</topic><topic>Calibration</topic><topic>Computation</topic><topic>Computer Simulation</topic><topic>Computer Software</topic><topic>Data Analysis</topic><topic>Epidemiology</topic><topic>Error of Measurement</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalized linear models</topic><topic>Humanities</topic><topic>Indexing in process</topic><topic>Law</topic><topic>Maximum Likelihood Statistics</topic><topic>Psychology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Public health</topic><topic>Regression (Statistics)</topic><topic>Statistical Theory and Methods</topic><topic>Statistics for Social Sciences</topic><topic>Statistics. Mathematics</topic><topic>Testing and Evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skrondal, Anders</creatorcontrib><creatorcontrib>Kuha, Jouni</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection【Remote access available】</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Education Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest ABI/INFORM Global</collection><collection>Education Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skrondal, Anders</au><au>Kuha, Jouni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ983213</ericid><atitle>Improved Regression Calibration</atitle><jtitle>Psychometrika</jtitle><stitle>Psychometrika</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>77</volume><issue>4</issue><spage>649</spage><epage>669</epage><pages>649-669</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><coden>PSMTA2</coden><abstract>The likelihood for generalized linear models with covariate measurement error cannot in general be expressed in closed form, which makes maximum likelihood estimation taxing. A popular alternative is regression calibration which is computationally efficient at the cost of inconsistent estimation. We propose an improved regression calibration approach, a general pseudo maximum likelihood estimation method based on a conveniently decomposed form of the likelihood. It is both consistent and computationally efficient, and produces point estimates and estimated standard errors which are practically identical to those obtained by maximum likelihood. Simulations suggest that improved regression calibration, which is easy to implement in standard software, works well in a range of situations.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s11336-012-9285-1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 2012-10, Vol.77 (4), p.649-669
issn 0033-3123
1860-0980
language eng
recordid cdi_proquest_miscellaneous_1125237553
source Social Science Premium Collection; ProQuest ABI/INFORM Global; Springer Link; ERIC; Education Collection
subjects Assessment
Behavioral Science and Psychology
Biological and medical sciences
Calibration
Computation
Computer Simulation
Computer Software
Data Analysis
Epidemiology
Error of Measurement
Fundamental and applied biological sciences. Psychology
Generalized linear models
Humanities
Indexing in process
Law
Maximum Likelihood Statistics
Psychology
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics
Psychometrics. Statistics. Methodology
Public health
Regression (Statistics)
Statistical Theory and Methods
Statistics for Social Sciences
Statistics. Mathematics
Testing and Evaluation
title Improved Regression Calibration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A14%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Regression%20Calibration&rft.jtitle=Psychometrika&rft.au=Skrondal,%20Anders&rft.date=2012-10-01&rft.volume=77&rft.issue=4&rft.spage=649&rft.epage=669&rft.pages=649-669&rft.issn=0033-3123&rft.eissn=1860-0980&rft.coden=PSMTA2&rft_id=info:doi/10.1007/s11336-012-9285-1&rft_dat=%3Cproquest_cross%3E1125237553%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-c4cb15188987c6d2637e416ff6da3ffef47c0fc867fe34c2d5671421e03131ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1113196383&rft_id=info:pmid/&rft_ericid=EJ983213&rfr_iscdi=true