Loading…
Electroactive polymer-based electrochemical capacitors using poly(benzimidazo-benzophenanthroline) and its pyridine derivative poly(4-aza-benzimidazo-benzophenanthroline) as cathode materials with ionic liquid electrolyte
A novel processing technique was used to solution cast films of poly(benzimidazo benzophenanthroline), (BBL), and the novel ladder polymer poly(4-aza-benzimidazo benzophenanthroline) (Py-BBL), which were used as cathode materials in Type IV electroactive polymer-based electrochemical capacitors (EPE...
Saved in:
Published in: | Journal of power sources 2012-12, Vol.220, p.236-242 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel processing technique was used to solution cast films of poly(benzimidazo benzophenanthroline), (BBL), and the novel ladder polymer poly(4-aza-benzimidazo benzophenanthroline) (Py-BBL), which were used as cathode materials in Type IV electroactive polymer-based electrochemical capacitors (EPECs). This new processing technique involves co-casting the polymer from solution with a room temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIBTI). The new processing technique gave polymer films with superior transport properties and electrochemical stabilities, did not require a break-in period, and yielded higher charge capacity than the standard films. Co-cast films of BBL and Py-BBL were each incorporated into separate Type IV EPECs using poly(3,4-propylene dioxythiophene) (PProDOT) as the anode material. It was found that the PProDOT/BBL capacitors store, on average, about 50% more energy than a comparable PProDOT/Py-BBL EPEC. While PProDOT/BBL films have an energy density advantage at rates (power densities) less than 0.01 kW kg−1, PProDOT/Py-BBL EPECs are capable of delivering higher energy than the BBL EPECs at rates greater than 0.01 kW kg−1 (550 s per cycle). In fact, PProDOT/Py-BBL devices delivered more than ten times the energy density of PProDOT/BBL devices at 0.5 kW kg−1 (50 s per cycle). The PProDOT/Py-BBL EPECs were cycled for 10,000 cycles at 65% depth of discharge and maintained 96% of the initial energy and power density, whereas the PProDOT/BBL EPECs were cycled under the same conditions and lost more than 35% of the initial energy and power density after only 2300 cycles.
▸ A new processing technique gives polymer films with superior transport properties. ▸ Using this technique, Type IV capacitors were constructed. ▸ BBL-based capacitors store slightly more energy than a comparable Py-BBL device at low rates. ▸ The Py-BBL devices deliver much higher energy at higher rates. ▸ The Py-BBL devices were found to last least five times as long as the BBL devices. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2012.07.068 |